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Remarques :

■ Les exercices sont indépendants.

■ Il sera tenu compte de la propreté de votre copie, ainsi que de la clarté et de la qualité de la rédaction et du
raisonnement.

■ Ne pas écrire avec un crayon papier, sauf pour dessiner et/ou annoter des croquis, le cas échéant.

■ Utiliser les notations indiquées dans le texte et justifier toutes vos réponses.

■ Le sujet est à conserver par l’étudiant-e.

Exercice 1
Soit A ∈ M3(R) la matrice définie comme suit

A =

 2 −1 1
1 0 −1
2 −2 1


1. Déterminer les valeurs propres de A.

2. Peut-on affirmer dès à present que la matrice A est diagonalisable ? Justifier votre réponse.

3. Calculer les vecteurs propres de A associés aux valeurs propres déterminées précédement.

4. En déduire la matrice de passage P et la matrice diagonale D.

5. Inverser la matrice de passage P.

6. Calculer An, avec n ∈N.

Correction H [04.0041]

Exercice 2
Soit B ∈ M3(R) la matrice définie comme suit

B =

 1 1 1
−1 3 1
1 −1 1


1. Déterminer les valeurs propres de B.

2. Peut-on affirmer dès à present que la matrice B est diagonalisable ? Justifier votre réponse.
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3. Calculer les vecteurs propres de B associés aux valeurs propres déterminées précédement.

4. En déduire la matrice de passage P et la matrice diagonale D.

5. Inverser la matrice de passage P.

6. (BONUS) Calculer Bn, avec n ∈N.

7. (BONUS) On considère maintenant trois suites réelles (un) , (vn) et (wn) définies par leurs premiers termes

u0 = 0, v0 = 1, w0 = 0

et pour tous n ∈N  un = un−1 + vn−1 + wn−1
vn = −un−1 + 3vn−1 + wn−1
wn = un−1 − vn−1 + wn−1

Déterminer, pour chaque n ∈N, les expressions de un, vn et wn en fonction de n.

Correction H [04.0042]
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Correction de l’exercice 1 N

Soit A ∈ M3(R) la matrice définie comme suit

A =

 2 −1 1
1 0 −1
2 −2 1


1. Déterminer les valeurs propres de A.

On calcule le polynome caractéristique P(λ).

P(λ) =

∣∣∣∣∣∣
2− λ −1 1

1 −λ −1
2 −2 1− λ

∣∣∣∣∣∣ C1 ← C1 + C3

=

∣∣∣∣∣∣
3− λ −1 1

0 −λ −1
3− λ −2 1− λ

∣∣∣∣∣∣ L3 ← L3 − L1

=

∣∣∣∣∣∣
3− λ −1 1

0 −λ −1
0 −1 −λ

∣∣∣∣∣∣
= (−1)1+1 × (3− λ)×

∣∣∣∣−λ −1
−1 −λ

∣∣∣∣
= (3− λ)× (λ2 − 1)
= (3− λ)× (λ− 1)× (λ + 1)

On trouve comme valeurs propres {−1, 1, 3}.

2. Peut-on affirmer dès à present que la matrice A est diagonalisable ? Justifier votre réponse.

La matrice A est une matrice carrée de dimenssion 3 et admet 3 valeurs propres disctinctes deux à deux. On
peut donc affirmer que A est diagonalisable.

3. Calculer les vecteurs propres de A associés aux valeurs propres déterminées précédement.

• Valeur propre λ = 1
On cherche les vecteurs propres associés à λ = 1 en résolvant

AX = 1X ⇐⇒ (A− I3)X = 0.

On a

A− I3 =

1 −1 1
1 −1 −1
2 −2 0

 .

Soit X =

x
y
z

. Le système associé est


x− y + z = 0
x− y− z = 0
2x− 2y = 0

La troisième équation donne :
2x− 2y = 0 ⇐⇒ x = y.
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En remplaçant dans la première équation :

x− x + z = 0 ⇐⇒ z = 0.

La deuxième équation est alors automatiquement vérifiée. On obtient donc :{
x = y
z = 0

Ainsi, l’espace propre associé à λ = 1 est

E1 =


x

x
0

 ∣∣∣∣∣∣ x ∈ R

 = Vect

1
1
0

 .

Un vecteur propre associé à λ = 1 est donc

v1 =

1
1
0



• Valeur propre λ = −1
On résout maintenant

AX = −1X ⇐⇒ (A + I3)X = 0.

On a

A + I3 =

3 −1 1
1 1 −1
2 −2 2

 .

Le système associé est 
3x− y + z = 0
x + y− z = 0
2x− 2y + 2z = 0

La troisième équation se simplifie en :
x− y + z = 0.

Soustrayons la deuxième équation à la troisième :

(x− y + z)− (x + y− z) = 0 ⇐⇒ −2y + 2z = 0 ⇐⇒ y = z.

En reportant dans la deuxième équation :

x + y− y = 0 ⇐⇒ x = 0.

Ainsi, {
x = 0
y = z

Donc l’espace propre associé à λ = −1 est

E−1 =


0

y
y

 ∣∣∣∣∣∣ y ∈ R

 = Vect

0
1
1

 .

Un vecteur propre associé à λ = −1 est donc

v2 =

0
1
1

 .
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• Valeur propre λ = 3
On résout

AX = 3X ⇐⇒ (A− 3I3)X = 0.

On a

A− 3I3 =

−1 −1 1
1 −3 −1
2 −2 −2

 .

Le système associé est 
−x− y + z = 0
x− 3y− z = 0
2x− 2y− 2z = 0

La troisième équation se simplifie :
x− y− z = 0.

Soustrayons la troisième équation à la deuxième :

(x− 3y− z)− (x− y− z) = 0 ⇐⇒ −2y = 0 ⇐⇒ y = 0.

En remplaçant dans la première équation :

−x + z = 0 ⇐⇒ z = x.

On obtient donc {
y = 0
z = x

L’espace propre associé à λ = 3 est alors

E3 =


x

0
x

 ∣∣∣∣∣∣ x ∈ R

 = Vect

1
0
1

 .

Un vecteur propre associé à λ = 3 est donc

v3 =

1
0
1

 .

4. En déduire la matrice de passage P et la matrice diagonale D.

On peut alors écrire la matrice de passage P et la matrice diagonale D comme suit :

P =

1 0 1
1 1 0
0 1 1

 D =

1 0 0
0 −1 0
0 0 3


5. Inverser la matrice de passage P.

On cherche à inverser la matrice

P =

1 0 1
1 1 0
0 1 1

 .

On écrit la matrice augmentée (P | I3) comme suit 1 0 1 1 0 0
1 1 0 0 1 0
0 1 1 0 0 1

 .

On va effectuer une succesion d’opérations élémentaires.
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• L2 ← L2 − L1  1 0 1 1 0 0
0 1 −1 −1 1 0
0 1 1 0 0 1


• L3 ← L3 − L2  1 0 1 1 0 0

0 1 −1 −1 1 0
0 0 2 1 −1 1


• L3 ← 1

2 L3  1 0 1 1 0 0
0 1 −1 −1 1 0
0 0 1 1

2 − 1
2

1
2


• L1 ← L1 − L3  1 0 0 1

2
1
2 − 1

2
0 1 −1 −1 1 0
0 0 1 1

2 − 1
2

1
2


• L2 ← L2 + L3  1 0 0 1

2
1
2 − 1

2
0 1 0 − 1

2
1
2

1
2

0 0 1 1
2 − 1

2
1
2


La partie gauche est désormais l’identité I3, donc la partie droite est P−1.

On obtient ainsi :

P−1 =
1
2

 1 1 −1
−1 1 1
1 −1 1

 .

On peut vérifier que
PP−1 = I3,

ce qui confirme que le calcul est correct.

6. Calculer An, avec n ∈N.

On a montré précédemment que la matrice A est diagonalisable. Elle s’écrit donc sous la forme

A = PDP−1,

où

P =

1 0 1
1 1 0
0 1 1

 , D =

1 0 0
0 −1 0
0 0 3

 , P−1 =
1
2

 1 1 −1
−1 1 1
1 −1 1

 .

Pour tout entier naturel n, on a :
An = (PDP−1)n.

En utilisant l’associativité du produit matriciel et le fait que

P−1P = I3,

on obtient :
An = PDnP−1.

La matrice D est diagonale, donc ses puissances se calculent terme à terme sur la diagonale :

Dn =

1n 0 0
0 (−1)n 0
0 0 3n

 =

1 0 0
0 (−1)n 0
0 0 3n

 .
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On calcule d’abord le produit :

PDn =

1 0 1
1 1 0
0 1 1

1 0 0
0 (−1)n 0
0 0 3n

 .

Comme Dn est diagonale, chaque colonne de P est multipliée par la valeur propre correspondante :

PDn =

1 0 3n

1 (−1)n 0
0 (−1)n 3n

 .

On multiplie maintenant par P−1 :

An = PDnP−1 =
1
2

1 0 3n

1 (−1)n 0
0 (−1)n 3n

 1 1 −1
−1 1 1
1 −1 1

 .

Après calcul, on obtient :

An =
1
2

 1 + 3n 1− 3n −1 + 3n

1− (−1)n 1 + (−1)n −1− (−1)n

3n − (−1)n −3n − (−1)n 3n + (−1)n

 .

Pour tout entier naturel n, la puissance An s’exprime explicitement en fonction de (−1)n et 3n, ce qui permet :

• un calcul rapide de An pour tout n,

• l’étude du comportement asymptotique de An lorsque n→ +∞.

Correction de l’exercice 2 N

Soit B ∈ M3(R) la matrice définie comme suit

B =

 1 1 1
−1 3 1
1 −1 1


1. Déterminer les valeurs propres de B.

Le polynôme caractéristique est

P(λ) = det(B− λI3) = det

1− λ 1 1
−1 3− λ 1
1 −1 1− λ

 .

On effectue l’opération
L3 ← L3 + L2

pour simplifier le déterminant. On obtient :

P(λ) =

∣∣∣∣∣∣
1− λ 1 1
−1 3− λ 1
0 2− λ 2− λ

∣∣∣∣∣∣ .

On peut ensuite effectuer
C2 ← C2 − C3
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P(λ) =

∣∣∣∣∣∣
1− λ 0 1
−1 2− λ 1
0 0 2− λ

∣∣∣∣∣∣ .

On a donc :

P(λ) = (−1)3+3 × (2− λ)× (1− λ)× (2− λ)

= (2− λ)2 (1− λ)

Les valeurs propres de B sont donc

λ1 = 1, λ2 = 2 (multiplicité 2) .

2. Peut-on affirmer dès à present que la matrice B est diagonalisable ? Justifier votre réponse.

Une matrice 3× 3 est diagonalisable si la somme des dimensions des sous-espaces propres est égale à 3.

Ici :

• λ = 1 a une multiplicité de 1,

• λ = 2 a une multiplicité de 2.

Il faut donc vérifier que la dimension du sous-espace propre associé à λ = 2 est égale à 2.

On ne peut donc pas encore affirmer que B est diagonalisable sans calculer les vecteurs propres.

3. Calculer les vecteurs propres de B associés aux valeurs propres déterminées précédement.

On a trouvé que les valeurs propres de B sont

λ1 = 1, λ2 = 2 (multiplicité 2).

Vecteurs propres associés à λ1 = 1

On résout le système

B = 1X ⇐⇒ (B− I3)X = 0 avec X =

x
y
z

 .

B− I3 =

 0 1 1
−1 2 1
1 −1 0

 .

Le système s’écrit : 
0 · x + 1 · y + 1 · z = 0 =⇒ y + z = 0,
−x + 2y + z = 0,
x− y + 0 · z = 0 =⇒ x− y = 0.

• De la troisième équation : x = y

• De la première équation : y + z = 0 =⇒ z = −y

• Vérification avec la deuxième : −x + 2y + z = −y + 2y− y = 0, correct.

Donc un vecteur propre est

v1 =

x
y
z

 =

 y
y
−y

 = y

 1
1
−1

 , y ̸= 0.
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v1 =

 1
1
−1



Vecteurs propres associés à λ2 = 2

On résout
B = 2X ⇐⇒ (B− 2I3)X = 0.

B− 2I3 =

−1 1 1
−1 1 1
1 −1 −1

 .

Le système s’écrit : 
−x + y + z = 0,
−x + y + z = 0,
x− y− z = 0.

• Les deux premières équations sont identiques : −x + y + z = 0 =⇒ x = y + z

• La troisième équation : x− y− z = (y + z)− y− z = 0, correct.

On a donc deux paramètres libres, par exemple y et z. On peut écire :

X =

y + z
y
z

 =

y
y
0

 =

z
0
z

 = y

1
1
0

+ z

1
0
1


Une base de l’espace propre associé à λ2 = 2 est donc

v2 =

1
1
0

 , v3 =

1
0
1

 .

Conclusion :

Comme la somme des dimensions des espaces propres est 1 + 1 + 1 = 3, la matrice B est diagonalisable.

4. En déduire la matrice de passage P et la matrice diagonale D.

On choisit comme matrice de passage

P =

 1 1 1
1 1 0
−1 0 1

 ,

et la matrice diagonale associée

D =

1 0 0
0 2 0
0 0 2

 .

On a alors
B = PDP−1.
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5. Inverser la matrice de passage P.

On forme la matrice augmentée (P | I3) : 1 1 1 1 0 0
1 1 0 0 1 0
−1 0 1 0 0 1

 .

L’objectif est de transformer la partie gauche en la matrice identité.

Opération-s 1 :

L2 ← L2 − L1 L3 ← L3 + L1

 1 1 1 1 0 0
0 0 −1 −1 1 0
0 1 2 1 0 1


Opération 2 :

Permutons L2 ↔ L3 pour avoir un pivot (coeffcient sur la diagonale) non nul : 1 1 1 1 0 0
0 1 2 1 0 1
0 0 −1 −1 1 0


Opération-s 3 :

L1 ← L1 − L2 L3 ← −L3

 1 0 −1 0 0 −1
0 1 2 1 0 1
0 0 1 1 −1 0


Opération 4 :

L1 ← L1 + L3 L2 ← L2 − 2L3

 1 0 0 1 −1 −1
0 1 0 −1 2 1
0 0 1 1 −1 0


La partie gauche est maintenant I3, donc la partie droite est l’inverse :

P−1 =

 1 −1 −1
−1 2 1
1 −1 0


6. Calculer Bn, avec n ∈N.

On a trouvé que B est diagonalisable avec

P =

 1 1 1
1 1 0
−1 0 1

 , D =

1 0 0
0 2 0
0 0 2

 , P−1 =

 1 −1 −1
−1 2 1
1 −1 0

 .

10 - 13



Donc
Bn = PDnP−1.

Comme D est diagonale, il suffit d’élever chaque valeur propre à la puissance n :

Dn =

1n 0 0
0 2n 0
0 0 2n

 =

1 0 0
0 2n 0
0 0 2n

 .

On commence par le calcul du produit DnP−1.

DnP−1 =

1 0 0
0 2n 0
0 0 2n

 1 −1 −1
−1 2 1
1 −1 0

 =

 1 −1 −1
−2n 2 · 2n 2n

2n −2n 0

 .

On calcule esnuite Bn = P(DnP−1)

Bn =

 1 1 1
1 1 0
−1 0 1

 1 −1 −1
−2n 2 · 2n 2n

2n −2n 0

 .

D’où

Bn =

 1 2n − 1 2n − 1
−(2n − 1) 2n+1 − 1 2n − 1

2n − 1 1− 2n 1

 .

7. On considère maintenant trois suites réelles (un) , (vn) et (wn) définies par leurs premiers termes

u0 = 0, v0 = 1, w0 = 0

et pour tous n ∈N  un = un−1 + vn−1 + wn−1
vn = −un−1 + 3vn−1 + wn−1
wn = un−1 − vn−1 + wn−1

Déterminer, pour chaque n ∈N, les expressions de un, vn et wn en fonction de n.

Mise sous forme matricielle
Posons

Xn =

un
vn
wn

 .

Le système s’écrit :

Xn = BXn−1, X0 =

0
1
0

 , B =

 1 1 1
−1 3 1
1 −1 1

 .

Démonstration par récurrence que Xn = BnX0

On considère la suite de vecteurs

Xn =

un
vn
wn

 ∈ R3,

définie par

X0 =

0
1
0

 , Xn = BXn−1, n ≥ 1,
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où

B =

 1 1 1
−1 3 1
1 −1 1

 .

On souhaite démontrer :
∀n ∈N, Xn = BnX0.

• Initialisation :
Pour n = 0 :

X0 = B0X0 = I3X0 = X0.

La propriété est donc vraie pour n = 0.

• Hérédité
Supposons que la propriété soit vraie pour un certain n ≥ 0, c’est-à-dire

Xn = BnX0.

On doit montrer qu’elle est vraie pour n + 1 :

Xn+1 = BXn (par définition de la suite).

En utilisant l’hypothèse de récurrence Xn = BnX0 :

Xn+1 = BXn = B(BnX0) = Bn+1X0.

• Conclusion
Par le principe de récurrence, la propriété est vraie pour tout n ∈N :

Xn = BnX0 .

Expression générale grâce à la diagonalisation

On a B = PDP−1, donc
Xn = BnX0 = PDnP−1X0.

Rappelons :

P =

 1 1 1
1 1 0
−1 0 1

 , D =

1 0 0
0 2 0
0 0 2

 , P−1 =

 1 −1 −1
−1 2 1
1 −1 0

 .

Calcul de P−1X0

P−1X0 =

 1 −1 −1
−1 2 1
1 −1 0

0
1
0

 =

−1
2
−1

 .

Application de Dn

DnP−1X0 =

1 0 0
0 2n 0
0 0 2n

−1
2
−1

 =

 −1
2 · 2n

−1 · 2n

 =

 −1
2n+1

−2n

 .

Multiplication par P
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Xn = P(DnP−1X0) =

 1 1 1
1 1 0
−1 0 1

 −1
2n+1

−2n

 .

Calculons chaque composante :

un = 1 · (−1) + 1 · 2n+1 + 1 · (−2n) = −1 + 2n+1 − 2n = 2n − 1,

vn = 1 · (−1) + 1 · 2n+1 + 0 · (−2n) = −1 + 2n+1 = 2n+1 − 1,

wn = −1 · (−1) + 0 · 2n+1 + 1 · (−2n) = 1− 2n = 1− 2n.

Conclusion

Pour tout n ∈N, les suites sont donc données par :

un = 2n − 1, vn = 2n+1 − 1, wn = 1− 2n .

Ces expressions vérifient bien les conditions initiales :

u0 = 0, v0 = 1, w0 = 0.
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