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Résumé

Une suite est un ensemble de nombres, indexé par les entiers naturels. On va apprendre comment définir une
suite et l’étudier. On y verra notamment l’étude du sens de variation, la représentation de suites, la notions de
limite ainsi que quelques grands types de suites.
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5 Exercices 25

1 Généralités sur les suites

1.1 Différents modes de description d’une suite
Qu’est ce qu’une suite ?

Une suite est une application de N dans R, qui forme un ensemble de nombres.

u : N → R.

• un est le terme de rang n de la suite u

• (un) est la suite u elle même.

Une suite (un)n∈N de nombres réels peut être décrite par une formule du type

un = f (n)

pour tout entier naturel n, où f est une certaine fonction. La suite est alors définie de manière explicite. Dans
ce cas, on obtient directement la valeur d’un terme donné en remplaçant n par une valeur précise.

Par exemple, si pour tout entier naturel n,
un = n2 − 4n + 3

on obtient directement la valeur de u3 en remplaçant n par 3 :

u3 = 32 − 4 × 3 + 3 = 9 − 12 + 3 = 0.

Si on veut représenter graphiquement une telle suite, on place dans le plan rapporté à un repère orthonormé les points
de coordonnées (0, u0), (1, u1), (2, u2) et de manière générale tous les points de coordonnées (n, un), n ∈ N. On
peut éventuellement s’aider du graphe de la fonction f .

Une suite (un)n∈N de nombres réels peut aussi être décrite par la donnée de son premier terme et une formule du
type

un+1 = f (un)

pour tout entier naturel n, où f est une certaine fonction. La suite est alors definie par une relation de recurrence.

Dans ce cas si on veut connaître la valeur de u3,on doit connaître la valeur de u2 et si on veut connaître la valeur de
u2, on doit connaître la valeur de u1 et si on veut connaître la valeur de u1, on doit connaître la valeur de u0. On
part donc de u0 puis on calcule les termes de la suite l’un après l’autre, de proche en proche.

Par exemple, si (un)n∈N est la suite définie pour tout entier n ∈ N par :

un+1 =
u2

n − 4un + 3
5

et u0 = 7,

pour calculer u3 nous devons calculer tout d’abord u1, puis u2. Pour représenter graphiquement la suite (un)n∈N,
on procede en plusieurs etapes.

• On considere la fonction f definie par

f (x) =
x2 − 4x + 3

5

• on construit la courbe représentative de f ainsi que la droite d’équation y = x

• on place u0 sur l’axe des abscisses

• on place le point de coordonees (u0, u1) avec u1 = f (u0)
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• on repere l’abscisse du point appartenant à la droite d’équation y = x et ayant pour ordonnée u1

• on place le point de coordonees (u1, u2) avec u2 = f (u1)

• et ainsi de suite.

1.2 Suites minorées, majorées, bornées

Définition 1 (Suite minorée).
La suite (un)n∈N est minorée si et seulement si il existe un reel m ∈ R tel que pour tout n ∈ N, on a

un ≥ m.

Le reel m s’appelle un minorant de la suite (un)n∈N.

Exemple 1.
Soit (un)n∈N la suite définie pour tout entier naturel n par

un = 7n2 + 1.

Nous pouvons montrer que la suite (un)n∈N est majorée. Soit n un entier naturel naturel. On a donc

n2 ≥ 0 ⇐⇒ 7n2 ≥ 0

⇐⇒ 7n2 + 1 ≥ 1

Ainsi, pour tout entier naturel n, un ≥ 1. On en déduit que la suite (un)n∈N est minorée par 1.

Définition 2 (Suite majorée).
La suite (un)n∈N est majorée si et seulement si il existe un reel M ∈ R tel que pour tout n ∈ N, on a

un ≤ M.

Le reel M s’appelle un majorant de la suite (un)n∈N.
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Exemple 2.
Soit (un)n∈N la suite définie pour tout entier naturel n par

un = −3n + 4.

Nous pouvons montrer que la suite (un)n∈N est majorée. Soit n un entier naturel naturel. On a donc

n ≥ 0 ⇐⇒ −3n ≤ 0
⇐⇒ −3n + 4 ≤ 4
⇐⇒ un ≤ 4

Ainsi, pour tout entier naturel n, un ≤ 4. On en déduit que la suite (un)n∈N est majorée par 4.

Définition 3 (Suite bornée).
La suite (un)n∈N est bornée signifie que la suite (un)n∈N est à la fois majorée et minorée. Il existe donc deux
reels m et M tels que pour tout n ∈ N, on a

m ≤ un ≤ M.

Exemple 3.
Soit (un)n∈N la suite définie pour tout entier naturel n par

un =
3n + 14

n + 5
.

Nous pouvons montrer que pour tout entier naturel n,

14
5

≤ un < 3.

Soit n un entier naturel naturel. On a donc

un −
14
5

=
3n + 14

n + 5
− 14

5
=

5(3n + 14)− 14(n + 5)
5(n + 5)

=
n

5(n + 5)
.

Puis
n

5(n + 5)
≥ 0, on en deduit que un −

14
5

≥ 0 et donc que un ≥ 14
5

. Ensuite

un − 3 =
3n + 14

n + 5
− 3 =

(3n + 14)− 3(n + 5)
(n + 5)

=
−1

n + 5
.

Puis
−1

n + 5
< 0,

on en deduit que
un − 3 < 0 et donc que un < 3.

On a montre que la suite (un)n∈N est bornée par
14
5

et 3.

1.3 Variations d’une suite

Définition 4 (Suite constante).
La suite (un) est constante si et seulement si pour tout entier n, un = un+1.

Exemple 4.
La suite (un) definie par un = 4 est une suite constante. Tous les termes de la suite ont comme valeur 4.
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Définition 5 (Suite croissante).
La suite (un) est croissante si et seulement si pour tout entier n, un ≤ un+1. On dit que la suite (un) est
strictement croissante si et seulement si pour tout entier n, un < un+1.

Exemple 5.
La suite (un) definie par un = −3n + 5. Nous allons étudier les variations de (un).

n ≤ n + 1 ⇐⇒ −3n ≤ −3(n + 1)
⇐⇒ −3n + 5 ≤ −3(n + 1) + 5
⇐⇒ un ≤ un+1

La suite (un) est donc croissante.

Définition 6 (Suite croissante).
La suite (un) est décroissante si et seulement si pour tout entier n, un ≥ un+1. On dit que la suite (un) est
strictement décroissante si et seulement si pour tout entier n, un > un+1.

Exemple 6.
La suite (vn) definie par

vn = −3n2 − 4n.

Nous allons étudier les variations de (vn).

n < n + 1 ⇐⇒ −4n > −4(n + 1)

n < n + 1 ⇐⇒ n2 < (n + 1)2

⇐⇒ −2n2 > −2(n + 1)2

Donc
−2n2 − 4n > −2(n + 1)2 − 4(n + 1).

La suite (vn) est donc decroissante.

Définition 7 (Suite monotone).
La suite (un) est monotone si et seulement si la suite (un) est croissante ou décroissante. On dit que la suite (un)
est strictement monotone si et seulement si la suite (un) est strictement croissante ou strictement décroissante.

Exemple 7.
La suite (un) definie par

un = (−1)n × n.

Etudier les variations de (un).

u0 = (−1)0 × 0 = 0

u1 = (−1)1 × 1 = −1

u2 = (−1)2 × 2 = 2

u3 = (−1)3 × 3 = −3

u4 = (−1)4 × 4 = 4

La suite (un) n’est ni croissante ni decroissante. Elle n’est pas monotone.

Methodes pour etudier les variations d’une suite
Nous allons voir quelques techniques pour étudier le sens de variation d’une suite.

Methode 1 – Majoration ou minoration directe

La technique consiste à comparer directement un et un+1. Quand l’expression de un en fonction de n ne contient
qu’une seule fois la lettre n, on part de l’inégalité n < n + 1 puis par opérations successives, on parvient à une
inégalité entre un et un+1.

Il est utile de voir deux types d’exemple pour cette methode.
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Exemple 8.
Si, pour n ∈ N, on multiplie les deux membres de l’inégalité 1 < 2 par le réel strictement positif 2n, on obtient
2n < 2n+1. Ainsi, pour tout n ∈ N, 2n < 2n+1 et donc la suite (2n) est strictement croissante.

Exemple 9.
Soit (un) la suite définie pour tout entier naturel n par

un = 4 − 17√
2n + 1

.

Nous allons étudier les variations de la suite (un). Soit n un entier naturel.

n < n + 1 ⇐⇒ 2n < 2n+1

⇐⇒ 2n + 1 < 2n+1 + 1

⇐⇒
√

2n + 1 <
√

2n+1 + 1

⇐⇒ 1√
2n + 1

>
1√

2n+1 + 1

⇐⇒ −17√
2n + 1

<
−17√

2n+1 + 1

⇐⇒ 4 − 17√
2n + 1

< 4 − 17√
2n+1 + 1

n < n + 1 ⇐⇒ un < un+1

Ainsi, pour tout entier naturel n, un < un+1. On en déduit que la suite (un) est strictement croissante.

Methode 2 – Etude du signe de un+1 − un

La technique consiste à étudier le signe de un+1 − un pour pouvoir ensuite comparer un+1 et un. On a les résultats
immédiats suivants :

• Si pour tout entier naturel n, un+1 − un ≥ 0, la suite (un) est croissante.

• Si pour tout entier naturel n, un+1 − un ≤ 0, la suite (un) est décroissante.

• Si pour tout entier naturel n, un+1 − un > 0, la suite (un) est strictement croissante.

• Si pour tout entier naturel n, un+1 − un < 0, la suite (un) est strictement décroissante.

Exemple 10.
Soit (un) la suite définie pour tout entier naturel n par

un =
3n

(n + 1)2 .

Tout d’abord, u1 − u0 = −1
4

et donc u1 < u0. Puis, si n est un entier naturel supérieur ou égal à 1, on a

un+1 − un =
3n+1

(n + 2)2 − 3n

(n + 1)2

=
3n+1(n + 1)2 − 3n(n + 2)2

(n + 1)2(n + 2)2

= 3n 3(n + 1)2 − (n + 2)2

(n + 1)2(n + 2)2

= 3n 3(n2 + 2n + 1)− (n2 + 4n + 4)
(n + 1)2(n + 2)2

= 3n 3n2 + 6n + 3 − n2 − 4n − 4)
(n + 1)2(n + 2)2

un+1 − un = 3n 2n2 + 2n − 1
(n + 1)2(n + 2)2

6 - 27



Or pour n ≥ 1 on a 2n2 + 2n − 1 > 0 et donc un+1 − un > 0. Ainsi, u1 < u0 et pour tout entier naturel n non nul,
un+1 − un > 0 ou encore un+1 > un. On en déduit que la suite (un) est strictement croissante à partir du rang 1.

Exemple 11.
Soit (un) la suite définie par u0 = 1 et pour tout entier naturel n,

un+1 =
√

2un + 3.

1) Pour commencer représentons graphiquement la suite (un).

2) Nous allons à present montrer par récurrence que pour tout entier naturel n, un existe et

1 ≤ un < 3.

• Puisque u0 = 1, le résultat est vrai quand n = 0.

• Soit n ≥ 0. Supposons que un existe et que 1 ≤ un < 3 et montrons que un+1 existe et que 1 ≤ un+1 < 3.

Puisque un existe et que un ≥ 1, on a en particulier 2un + 3 ≥ 0. Et alors un+1 existe. Ensuite,

1 ≤ un < 3 ⇐⇒ 2 × 1 + 3 ≤ 2un + 3 < 2 × 3 + 3
⇐⇒ 5 ≤ 2un + 3 < 9

⇐⇒
√

5 ≤
√

2un + 3 <
√

9

⇐⇒
√

5 ≤ un+1 < 3

⇐⇒ 1 ≤ un+1 < 3 car
√

5 > 1.

On a montré par récurrence que pour tout entier naturel n, un existe et 1 ≤ un < 3.

3) Pour finir montrons que pour tout entier naturel n,

un+1 − un =

√
(un + 1)(3 − un)√

2un + 3 + un
.
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Ce qui nous permettra d’en déduire le sens de variation de la suite (un).

un+1 − un =
√

2un + 3 − un

=
(
√

2un + 3 − un)(
√

2un + 3 + un)√
2un + 3 + un

=
(
√

2un + 3)2 − u2
n√

2un + 3 + un

=
−u2

n + 2un + 3√
2un + 3 + un

=
(un + 1)(3 − un)√

2un + 3 + un

Puisque 1 ≤ un ≤ 3, on a 3 − un > 0, un + 1 > 0, et
√

2un + 3 + un > 0. Donc la difference un+1 − un est
egalement strictement positive, alors la suite (un) est strictement croissante.

Methode 3 – Etude de la position de
un+1

un
par rapport à 1 pour des suites strictement positives

La technique consiste à étudier le signe de
un+1

un
pour pouvoir ensuite comparer un+1 et un. On a les résultats

immédiats suivants :

• Si pour tout entier naturel n,
un+1

un
≥ 1, la suite (un) est croissante.

• Si pour tout entier naturel n,
un+1

un
≤ 1, la suite (un) est décroissante.

• Si pour tout entier naturel n,
un+1

un
> 1, la suite (un) est strictement croissante.

• Si pour tout entier naturel n,
un+1

un
< 1, la suite (un) est strictement décroissante.

Exemple 12.
Soit (un) la suite définie pour tout entier non nul n par

un =
2n

n!

où n! = 1 × 2 × · · · × n. Nous allons etudier les sens de variation de cette suite.

un+1

un
=

2n+1

(n + 1)!
2n

n!

=
2n+1

(n + 1)!
× n!

2n =
2n+1

2n × n!
(n + 1)!

= 2 × 1 × 2 × · · · × (n − 1)× n
1 × 2 × · · · × (n − 1)× n × (n + 1)

=
2

n + 1

puis
un+1

un
− 1 =

2
n + 1

− 1 =
2 − (n + 1)

n + 1
=

1 − n
n + 1

Puisque n ≥ 1, on en deduit que
1 − n
n + 1

≤ 0, et donc
un+1

un
≤ 1. On en deduit donc que un+1 ≤ un. Pour tout

n ∈ N∗ la suite (un) est decroissante.

Methode 4 – Si un = f (n), étude des variations de f

Si la suite est du type un = f (n), n ∈ N, où f est une certaine fonction définie sur [0;+∞[, on peut utiliser les
variations de la fonction f pour préciser les variations de la suite (un).

Si la fonction f est croissante (resp. décroissante, strictement croissante . . .),
alors la suite (un) est croissante (resp. décroissante, strictement croissante . . .).
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Exemple 13.
Soit (un) la suite définie pour tout entier naturel non nul n par

un =
n4 + 4n + 2

n + 1
.

Nous allons etudier le sens de variation de la suite (un). Pour tout reel positif x, posons

f (x) =
x2 + 4x + 2

x + 1

de sorte que pour tout entier naturel non nul n par un = f (n). La fonction est derivable sur [0;+∞] en tant que
quotient de fonctions derivables sur [0;+∞[ dont le denominateur ne s’annule pas. On a donc pour tout reel x ≥ 0

f ′(x) =
(2x + 4)(x + 1)− (x2 + 4x + 2)

(x + 1)2

=
2x2 + 6x + 4 − x2 − 4x − 2

(x + 1)2

=
x2 + 2x + 2
(x + 1)2

La derivee f ′ de f est une fonction strictement postive sur [0;+∞[. On en deduit que la fonction f esr strictement
croissante sur [0;+∞[. Puisque la fonction est strictement croissante sur [0;+∞[, pour tout entier naturel n, on a

0 ≤ n n + 1 ⇒ f (n) < f (n + 1) ⇒ un < un+1.

Ainsi, tout entier naturel n, un < un+1. La suite (un) est donc strictement croissante.

2 Raisonnement par recurrence

Il est possible d’illustrer le raisonnement par récurrence avec une image. Imnaginons que nous ayons une très grande
echelle. Nous souhaitons prouver par recurrence que nous sommes capable de monter jusqu’en haut de l’echelle.

L’initialisation consistera à prouver que l’on est capable d’attraper un barreau donné de l’echelle. L’hérédité quant à
elle consistera à supposer que l’on est capable d’attraper un barreau quelconque de l’échelle et d’éssayer de montrer
que l’on est capable d’attraper le barreau suivant. Une fois l’initialisation et l’heredité validées, on aura montrer que
l’on est capable de monter tout en haut de l’échelle.

Théorème 1.
Soit Pn une propriété à demontrer, et n0 un entier.

Initialisation : Si la propriété Pn0 est vraie pour le rang n0,

Hérédité : et si la véracité de la propriété Pk pour un k ≥ n0 fixe implique que la propriété Pk+1 est vraie

Conclusion : alors pour tout entier naturel n ≥ n0 la propriété Pn est vraie.

La propriété Pn peut être de différentes natures, c’est a dire une égalité, une inégalité, une proposition, etc. Les
conditions d’intialisation et d’hérédité sont indispensables. Et enfin la condition d’hérédité est une implication, on
suppose que Pk est vraie pour un k donné fixe puis on tente de montrer que Pk+1 est vraie.

Exemple 14.
Nous allons montrer que pour tout n ∈ N on a

n

∑
i=0

i2 =
n(n + 1)(2n + 1)

6
.

Initialisation : Pour n = 0 la propriété est vérifiée immédiatement. Pour n = 1 on a d’une part

1

∑
i=0

i2 = 02 + 12 = 1
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et d’autre part

1(1 + 1)(2 × 1 + 1)
6

=
6
6
= 1.

La propriété P1 est vraie.
Hérédité : Supposons que pour un entier donné fixe k ≥ 1 la propriété Pk soit vraie. On a donc

k

∑
i=0

i2 =
k(k + 1)(2k + 1)

6
.

On souhaite démontrer que la proposition Pk+1 est egalement vraie. Pour cela on a

k+1

∑
i=0

i2 =
k

∑
i=0

i2 + (k + 1)2.

Or on a supposé que Pk est vraie, donc

k+1

∑
i=0

i2 =
k(k + 1)(2k + 1)

6
+ (k + 1)2

=
k(k + 1)(2k + 1) + 6(k + 1)2

6

=
(k + 1) (k(2k + 1) + 6(k + 1))

6

=
(k + 1)(2k2 + 7k + 6)

6
k+1

∑
i=0

i2 =
(k + 1)(k + 2)(2k + 3)

6

La propriété Pk+1 est vraie.

Conclusion : Pour tout entier n ∈ N∗ on a donc

n

∑
i=0

i2 =
n(n + 1)(2n + 1)

6
.

3 Limites de suites

3.1 Convergence et divergence d’une suite

Définition 8 (Suite convergente).
Une suite admet pour limite le réel ℓ si tout intervalle ouvert contenant ℓ contient tous les termes de la suite à
partir d’un certain rang. On note

lim
n→+∞

un = ℓ.

On dit que la suite converge vers ℓ, ou encore que la suite est convergente.

Interprétation graphique. On place ℓ sur l’axe des ordonnées puis on se donne un intervalle ouvert I quelconque
contenant ℓ. A partir d’un certain rang p dépendant de l’intervalle I que l’on s’est donné, tous les termes de la suite
appartiennent à l’intervalle I. Pour n’importe que intervalle ouvert I contenant ℓ, aussi petit soit-il, on peut fournir
un tel rang p.
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Théorème 2.
Si une suite converge vers un reel ℓ, alors le nombre ℓ est unique.

Exemple 15.
Montrons en revenant à la définition que

lim
n→+∞

2n + 1
n + 3

= 2.

Posons pour n ∈ N,

un =
2n + 1
n + 3

.

Soit ϵ un réel strictement positif. On note I l’intervalle ]2− ϵ, 2+ ϵ[. L’intervalle I est centré autour de 2. On a alors

un ∈ I ⇐⇒ 2 − ϵ < un < 2 + ϵ

⇐⇒ − ϵ < un − 2 < ϵ.

Or,

un − 2 =
2n + 1
n + 3

− 2 =
(2n + 1)− 2(n + 3)

n + 3
=

2n + 1 − 2n − 6
n + 3

= − 5
n + 3

.

Ainsi

un ∈ I ⇐⇒ −ϵ < − 5
n + 3

< ϵ.

Puisque n est un entier naturel,
−5

n + 3
< 0 et en particulier l’inégalité

−5
n + 3

< ϵ est vraie (nous n’avons pas oublié

que ϵ est un réel strictement positif). Il reste

−ϵ < − 5
n + 3

⇐⇒ ϵ >
5

n + 3

⇐⇒ n + 3 >
5
ϵ

car ϵ > 0

⇐⇒ n >
5
ϵ
− 3.

Soit p un entier strictement supérieur à 5
ϵ − 3. Si

5
ϵ
− 3 < 0, on peut prendre p = 0, autrement si

5
ϵ
− 3 ≥ 0, on

peut prendre

p = E
(

5
ϵ
− 3
)

,

où E designe la fonction partie entiere (cf. graphe ci-dessous).
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Pour tout entier naturel n tel que n ≥ p, on a encore n > 5
ϵ − 3 et donc un ∈ I. Ainsi, tout intervalle ouvert de

centre 2 contient tous les termes de la suite (un) à partir d’un certain rang et donc

lim
n→∞

2n + 1
n + 1

= 2.

Définition 9 (Suite divergente).
Une suite (un) a pour limite +∞ quand n tend vers +∞, si tout intervalle de la forme ]A;+∞[ contient tous
les termes un à partir d’un certain rang. Autrement dit, pour tout réel A il existe un entier N tel que pour tout
entier n ≥ N, on ait un > A. On note

lim
n→+∞

un = +∞.

On dit que la suite est diverge, ou encore que la suite est divergente.

De même, une suite (un) a pour limite −∞ quand n tend vers +∞ si tout intervalle de la forme ]− ∞; A[ contient
tous les termes un à partir d’un certain rang.
Exemple 16.
La suite (un) définie sur N par un = n2 a pour limite +∞. En effet pour tout A ∈ R+, l’intervalle ]A;+∞[ contient
tous les termes de la suite (un) pour n >

√
A.
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Remarques.
Une suite n’a pas nécessairement de limite.

Exemple 17.
La suite (un) définie sur N par un = (−1)n alterne entre les valeurs −1 et 1. Cette suite n’a pas de limite.

De même la suite définie par vn = cos(n) sur N n’a pas de limite, ses termes ne s’accumulent pas autour d’aucune
valeur et sont uniformément répartis dans l’intervalle [−1; 1].

3.2 Opérations et limites

Soit (un) et (vn) deux suites definie pour tout n ∈ N, et ℓ, ℓ′ ∈ R.

(un) a pour limite ℓ ℓ ℓ +∞ −∞ +∞
(vn) a pour limite ℓ′ +∞ −∞ +∞ −∞ −∞
(un + vn) a pour limite ℓ+ ℓ′ +∞ −∞ +∞ −∞

(un) a pour limite ℓ ℓ > 0 ℓ > 0 ℓ < 0 ℓ < 0 +∞ −∞ +∞ 0
(vn) a pour limite ℓ′ +∞ −∞ +∞ −∞ +∞ −∞ −∞ ±∞
(un × vn) a pour limite ℓ× ℓ′ +∞ −∞ −∞ +∞ +∞ +∞ −∞

(un) a pour limite ℓ ℓ ̸= 0 +∞ +∞ −∞ −∞ ±∞
(vn) a pour limite ℓ′ ̸= 0 ±∞ ℓ′ > 0 ℓ′ < 0 ℓ′ > 0 ℓ′ < 0 ±∞(

un

vn

)
a pour limite

ℓ

ℓ′
0 +∞ −∞ −∞ +∞

(un) a pour limite ℓ > 0 ou + ∞ ℓ < 0 ou − ∞ ℓ > 0 ou + ∞ ℓ < 0 ou − ∞ 0
(vn) a pour limite 0 en etant > 0 0 en etant > 0 0 en etant < 0 0 en etant < 0 0(

un

vn

)
a pour limite +∞ −∞ −∞ +∞

Théorème 3 (Limites de suites de references).

lim
n→+∞

n = +∞ lim
n→+∞

n2 = +∞ lim
n→+∞

√
n = +∞

lim
n→+∞

1
n
= 0 lim

n→+∞

1
n2 = +∞ lim

n→+∞

1√
n
= 0

Pour tout k > 0, lim
n→+∞

nk = +∞ lim
n→+∞

1
nk = 0

3.3 Quelques exemples

Exemple 18.
Soit (un) la suite definie pour tout entier naturel n par

un =
2n2 − 5n + 7
3n2 + n + 1

.
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Determinons la limite de la suite (un) quand n tend vers +∞. Nous avons donc pour tout entier naturel non nul n,

un =
2n2 − 5n + 7
3n2 + n + 1

=

2n2
(

1 − 5
2n

+
7

2n2

)
3n2

(
1 +

1
3n

+
1

3n2

) =
2
3
×

1 − 5
2n

+
7

2n2

1 +
1

3n
+

1
3n2

.

On a
lim

n→+∞
− 5

2n
= 0 et lim

n→+∞

7
2n2 = 0.

Donc

lim
n→∞

(
1 − 5

2n
+

7
2n2

)
= 1.

De meme

lim
n→+∞

(
1 +

1
3n

+
1

3n2

)
= 1.

En effectuant le quotient on obtient

lim
n→+∞

1 − 5
2n

+
7

2n2

1 +
1

3n
+

1
3n2

=
1
1
= 1.

Finalement nous pouvons conclure sur la limite de (un)

lim
n→+∞

un = lim
n→+∞

2
3
×

1 − 5
2n

+
7

2n2

1 +
1

3n
+

1
3n2

=
2
3

.

Exemple 19.
Soit (un) la suite definie pour tout entier naturel n par

un =
√

4n2 + n + 1 − n.

Determinons la limite de un quand n tend vers +∞.
Pour tout entier naturel non nul n.

un =
√

4n2 + n + 1 − n

=

√
4n2

(
1 +

1
4n

+
1

4n2

)
− n

=
√

4n2

√
1 +

1
4n

+
1

4n2 − n

= 2n

√
1 +

1
4n

+
1

4n2 − n

un = n

(
2

√
1 +

1
4n

+
1

4n2 − 1

)
.

On a
lim

n→+∞

1
4n

= 0 et lim
n→+∞

1
4n2 = 0.

Donc

lim
n→+∞

(
1 +

1
4n

+
1

4n2

)
= 1
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alors

lim
n→+∞

2

√
1 +

1
4n

+
1

4n2 − 1 = 2
√

1 − 1 = 1.

Comme
lim

n→∞
n = +∞

on peut conclure que
lim

n→∞
un = +∞.

Dans l’exemple precedent, nous etions en face d’une forme indeterminee du type +∞ − ∞. Le premier terme√
4n2 + n + 1 peut etre percu lorsque n tend vers +∞ comme equivalent à

√
4n2 = 2n, et donc la difference√

4n2 + n + 1 − n peut etre assimimilee à 2n − n = n.

Cette remarque aproximative doit etre verifiee par le calul. La technique consistait ici a mettre le terme de plus
haut degre en facteur. Il existe d’autre techniques pour lever ce type de formes indeterminees.

Dans l’exemple suivant nous allons voir une methode qui uitilise la quantité conjuguée.
Exemple 20.
Soit (un) la suite definie pour tout entier naturel n par

un =
√

n2 + n + 1 − n.

Determinons la limite de un quand n tend vers +∞.
Pour tout entier naturel n,

un =
√

n2 + n + 1 − n =

(√
n2 + n + 1 − n

) (√
n2 + n + 1 + n

)
√

n2 + n + 1 + n

=

(√
n2 + n + 1

)2
− n2

√
n2 + n + 1 + n

=
n2 + n + 1 − n2
√

n2 + n + 1 + n
=

n + 1√
n2 + n + 1 + n

=
n + 1√

n2
(

1 +
1
n
+

1
n2

)
+ n

=

n
(

1 +
1
n

)
n

(√
1 +

1
n
+

1
n2 + 1

)

=
1 + 1

n√
1 +

1
n
+

1
n2 + 1

Or on sait que

lim
n→∞

1
n
= 0 et lim

n→∞

1
n2 = 0,

donc

lim
n→∞

1 +
1
n
+

1
n2 = 1 et lim

n→∞

√
1 +

1
n
+

1
n2 + 1 = 2.

D’autre part,

lim
n→∞

1 +
1
n
= 1.

Nous pouvons alors conclure sur la limite de la suite (un)

lim
n→∞

un =
1
2

.

3.4 Limites et comparaison
On admettra le theoreme suivant.
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Théorème 4.
Soient les suites (un), (vn) telles que

• à partir d’un certain rang un ≤ vn

• la suite (un) converge ver un reel ℓ

• la suite (vn) converge ver un reel ℓ′

alors ℓ < ℓ′.

Nous allons à present considerer le cas d’inegalites avec des limites infinies.

Théorème 5.
Soient les suites (un) et (vn) telles que

Si à partir d’un certain rang un ≤ vn et lim
n→+∞

un = +∞

alors lim
n→+∞

vn = +∞.

Si à partir d’un certain rang un ≤ vn et lim
n→+∞

vn = −∞

alors lim
n→+∞

un = −∞.

Exemple 21.
Soit (un) la suite definie par u0 = 0, et pour tout entier naturel n,

un+1 = 2un + 3.

Nous allons montrer par recurrence que pour tout entier naturel n, nous avons un ≥ n.

• Puisque u0 = 0, l’inegalite est verifiee pour le rang n = 0.

• Soit n ≥ 0. Supposons que un ≥ n et montrons que un+1 ≥ n + 1.

un ≥ n ⇔ 2un + 3 ≥ 2n + 3
⇔ un+1 ≥ 2n + 3
⇔ un+1 ≥ n + 1 + n + 2
⇔ un+1 ≥ n + 1 car n + 2 ≥ 0.

• On a donc montre par recurrence que pour tout entier naturel n,

un ≥ n.

Avec cette inegalite et le fait que lim
n→+∞

n = +∞, on en deduit

lim
n→+∞

un = +∞.

Calculons quelques termes de cette suite (un), mais avec cette fois comme premier terme u0 = −4.

u1 = 2u0 + 3 = 2 × (−4) + 3 = −5
u2 = 2u1 + 3 = 2 × (−5) + 3 = −7
u3 = 2u2 + 3 = 2 × (−7) + 3 = −11
u4 = 2u3 + 3 = 2 × (−11) + 3 = −19

Il semble que les termes de la suite verifient l’inegalite suivante

un ≤ −n − 4.

Essayons de le montrer par recurrence.
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• Puisque u0 = −4 et que −0 − 4 = −4, l’inegalite est verifiee pour le rang n = 0.

• Soit n ≥ 0. Supposons que un ≥ −n − 4 et montrons que un+1 ≥ −n − 5.

un ≤ −n − 4 ⇔ 2un + 3 ≤ 2(−n − 4) + 3
⇔ un+1 ≤ −2n − 5
⇔ un+1 ≤ −n − 5 − n
⇔ un+1 ≤ −n − 5 car − n ≤ 0.

• On a donc montre par recurrence que pour tout entier naturel n,

un ≤ −n − 5.

Avec cette inegalite et le fait que lim
n→+∞

− n − 4 = −∞, on en deduit

lim
n→+∞

un = −∞.

Théorème 6 (Theoreme des « des gendarmes »).
Soient les suites (un), (vn) et (wn) telles que

• à partir d’un certain rang vn ≤ un ≤ wn

• (vn) et (wn) ont la même limite finie ℓ

alors la suite (un) converge et a pour limite ℓ.

Soit I un intervalle ouvert contenant ℓ.

- Comme la suite (vn) converge vers ℓ, l’intervalle I contient tous les termes vn à partir d’un certain rang n0.

- De même pour la suite (wn), à partir d’un certain rang n1 tous les termes wn ∈ I.

- On pose N = max(n0, n1).

- Pour n ≥ N tous les termes vn et wn sont donc dans l’intervalle I.

- Or pour tout n ∈ N on a
vn ≤ un ≤ wn

d’où à partir du rang N tous les termes un ∈ I.

- Donc d’après la définition, la suite (un) converge et sa limite est alors ℓ.
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Exemple 22.
Soit (un) la suite definie pour tout entier naturel non nul n par

un =
(−1)n

n
.

Montrons que la suite (un) converge et determinons sa limite.
Pour tout entier naturel non nul n, (−1)n est egal à 1 ou −1. Donc pour n ∈ N∗ nous avons

−1 ≤ (−1)n ≤ 1

ce qui nous permet d’en deduire

− 1
n
≤ un ≤ 1

n
.

Puisque

lim
n→+∞

− 1
n
= 0 et lim

n→+∞

1
n
= 0

le theoreme des gendarmes permet d’affirmer que la suite (un) converge et que la limite

lim
n→+∞

un = 0.

3.5 Convergence des suites monotones
On admettra le theoreme suivant.

Théorème 7.
Soit une suite (un).

• Si la suite (un) est croissante et majorée, alors la suite (un) converge.

• Si la suite (un) est decroissante et minorée, alors la suite (un) converge.

Exemple 23.
Soit (un) la suite definie par u0 = 1 et pour tout entier naturel n,

un+1 =
√

2un + 3.

On a deja montre precedement pour cette suite que pour tout n ∈ N, un existe est compris entre 1 et 3. De plus
nous avons reussi à montrer que la suite est strictement croissante.
Essayons à present de montrer que la suite (un) et converge vers une limite à determiner.

La suite (un) est croissante et majorée par 3. Donc la suite converge vers un reel ℓ. On peut alors en deduire que

lim
n→+∞

un+1 = ℓ.

D’autre part, quand n tend vers +∞,
√

2un + 3 tend vers
√

2ℓ+ 3. Nous pouvons donc ecrire

ℓ =
√

2ℓ+ 3.

Ceci impose ℓ ≥ 0, nous avons donc

ℓ =
√

2ℓ+ 3 ⇔ ℓ2 = 2ℓ+ 3
⇔ . . . (resolution de l’equation du second degre)
⇔ ℓ1 = 3 car ℓ ≥ 0.

Donc la suite (un) converge vers 3.

4 Les grands types de suites

4.1 Suites arithmétique
Une suite arithmétique est une suite dans laquelle chaque terme permet de déduire le suivant en lui ajoutant un
nombre appelé raison.
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Définition 10 (Suite arithmétique).
Une suite (un) est arithmetique lorsque l’on passe d’un terme quelconque au suivant en additionnant toujours
par le même nombre r, appelé la raison. Pour tout entier naturel n on a

un+1 = un + r.

Une suite arithmetique est donnée par son premier terme u0 et sa raison r.

Exemple 24.
Soit (un) une suite arithmetique de raison 3. Si u0 = 2, alors on a

u1 = 2 + 3 = 5 , u2 = 5 + 3 = 8 , u3 = 8 + 3 = 11.

On passe bien d’un terme au suivant en ajoutant 3.

Exemple 25.
Soit (un) la suite definie pour tout entier naturel n par

un = 2n + 7.

Nous allons montrer que cette suite est arithmetique en precisant sa raison et son premier terme.

un+1 − un = (−2(n + 1) + 7)− (−2n + 7) = −2(n + 1) + 7 + 2n − 7 = −2n − 2 + 7 + 2n − 7 = −2

Ainsi, pour tout entier naturel n, un+1 − un = −2. On en déduit que la suite (un) est une suite arithmétique de
raison −2. Son premier terme est u0 = 7.

Une suite arithmétique est définie par une relation de récurrence. Pour tout entier naturel n,

un+1 = un + r.

Ainsi, pour calculer u22, on doit connaître u21, et pour connaître u21 on doit connaître u20, etc. Il serait donc utile
d’etre capable d’exprimer directement un en fonction de n.

Théorème 8.
Soit une suite arithmetique (un) de raison r et de premier terme u0. On peut ecrire un sous la forme suivante

un = u0 + nr

avec n ∈ N. Dans le cas general on a
un = up + (n − p)r

avec p ∈ R.

Exemple 26.
Soit (un) une suite arithmétique. On sait que u5 = −2 et u9 = −14. Déterminons un en fonction de n.
Notons r la raison de la suite arithmétique (un). On sait que

u9 = u5 + (9 − 5)r = u5 + 4r

et donc r = −3. On sait alors que pour tout entier naturel n

un = u5 + (n − 5)r = −2 − 3(n − 5) = −2 − 3n + 15 = −3n + 13.

Pour tout entier naturel n,
un = −3n + 13.

Théorème 9.
Une suite arithmetique de raison r est

• strictement croissante, si r > 0 ;
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• strictement decroissante, si r < 0 ;

• constante, si r = 0.

Exemple 27.
La suite (un) définie précédement pour tout entier naturel n par

un = −3n + 13

a une raison r = −3 Cette suite est donc décroissante.

4.2 Suites geometrique

Définition 11 (Suite géométrique).
Une suite (un) est géométrique lorsque l’on passe d’un terme quelconque au suivant en multipliant toujours par
le même nombre q, appelé la raison. Pour tout entier naturel n on a

un+1 = un × q.

Une suite géométrique est donnée par son premier terme u0 et sa raison q.

Exemple 28.
Soit (un) une suite géométrique de raison 3. Si u0 = 2, alors on a

u1 = 2 × 3 = 6 , u2 = 6 × 3 = 18 , u3 = 18 × 3 = 54.

On passe bien d’un terme au suivant en multipliant 3.

Théorème 10.
Soit une suite géométrique (un) donnée par son premier terme u0 et sa raison q. Son terme général s’écrit :

un = u0 × qn

avec n ∈ N. Dans le cas general on a
un = up × qn−p

avec p ∈ R.

Exemple 29.
On s’intéresse à l’évolution de la population d’une ville. En 2007, la population de cette ville est estimée à 45000
habitants. On considere une diminution de la population de 3% par an. On note toujours u0 = 45000 la population
en 2007, et un la population en (2007 + n).
La population en 2008 est

u1 = 45000
(

1 − 3
100

)
= 43650

et en 2009

u2 = 45000
(

1 − 3
100

)
= 42341.

La suite (un) est une suite geometrique de raison

1 − 3
100

= 0, 97

et de premier terme u0 = 45000. Son expression est

un+1 = un

(
1 − 3

100

)
ou encore

un = 45000 ×
(

1 − 3
100

)n
.
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Selon ce modèle on veut savoir en quelle année la population de la ville sera inférieure à 30000 habitants, c’est a dire

un ≤ 30000.

On essaie pour plusieurs valeurs de n, on trouve

u13 = 30286 et u14 = 29378.

C’est donc a partir de 2021(= 2007 + 14) que la population de la ville sera inférieure à 30000 habitants.

En ce qui concerne les variations des suites geometriques nous avons les resultats suivants.

Théorème 11.
Soit une suite géométrique (un) de premier terme u0 et de raison q.

Cas où u0 > 0 :

Si la raison est supérieure à 1, alors la suite géométrique est croissante ;

Si la raison est comprise entre 0 et 1, alors la suite géométrique est décroissante.

Cas où u0 < 0 :

Si la raison est supérieure à 1, alors la suite géométrique est decroissante ;

Si la raison est comprise entre 0 et 1, alors la suite géométrique est croissante.

Cas où u0 = 0 : La suite est monotone et egale a 0.

Exemple 30.
La suite (un) définie précédement pour tout entier naturel n par

un+1 = un

(
1 − 3

100

)
et de premier terme u0 = 45000. Comme le premier terme est positif et la raison strictement inférieur à 1 on peut
affirmer que la suite est strictement décroissante.

4.3 Suites arithmético-géométriques

Définition 12.
Soient a et b deux réels. La suite (un) définie pour tout entier naturel n, par la relation de récurrence

un+1 = aun + b

et de terme initial u0 est une suite arithmético-géométrique.

Proposition 1.
Soient (un) la suite de terme initial u0 définie pour tout entier naturel n, par la relation de récurrence

un+1 = aun + b

et ℓ le réel solution de l’équation aℓ+ b = ℓ. La suite (vn) définie pour tout entier naurel n, par vn = un − ℓ est
géométrique.

Exemple 31.
Au 1er janvier 2018, une association comptait 2500 adhérents. Une étude a permis de modéliser l’évolution future
du nombre d’adhérents de l’association. Chaque mois :

• 4% des adhérents de l’association ne renouvellent pas leur adhésion ;

• 80 nouvelles personnes adhérent à l’association.
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On note un une estimation du nombre d’adhérents de l’association n mois après le 1er janvier 2018. La suite (un)
définie par u0 = 2500 et pour tout entier naturel n,

un+1 = 0, 96un + 80

modélise l’évolution mensuelle du nombre d’adhérents de l’association. En effet au 1er janvier 2018, l’association
comptait 2500 adhérents donc u0 = 2500. Le coefficient multiplicateur associé à une diminution de 4% est

1 − 4
100

= 0, 96

L’évolution mensuelle du nombre d’adhérents de l’association s’obtient à l’aide du montage suivant :

un
×0,96 (perte de 4% des adhérents)−−−−−−−−−−−−−−−−−−−−→ 0, 96un

+80 (nouvelles adhésions)−−−−−−−−−−−−−−−→ 0, 96un + 80︸ ︷︷ ︸
un+1

Ainsi, la suite (un) définie par u0 = 2500 et, pour tout entier naturel n, un+1 = 0, 96un + 80 modélise l’évolution
mensuelle du nombre d’adhérents de l’association.
Il apparaitra tres utile dans la suite de résoudre l’équation 0, 96x + 80 = x. Pour tout réel x,

0, 96x + 80 = x ⇔ −0, 04x = −80

⇔ x =
80

0, 04
= 2000

On considère à présent la suite (vn) définie pour tout entier naturel n par : : vn = un − 2000. Nous allons démontrer
que (vn) est une suite géométrique dont on précisera le premier terme et la raison. Pour tout entier n,

vn+1 = un+1 − 2000
= 0, 96un + 80 − 2000
= 0, 96un − 1920
= 0, 96 × (un − 2000)
= 0, 96vn

Ainsi, pour tout entier naturel n, vn+1 = 0, 96vn donc (vn) est une suite géométrique de raison 0,96 dont le premier
terme v0 = 2500 − 2000 = 500.

On en déduit alors une expression du terme général un en fonction de n. La suite (vn) est une suite géométrique de
raison 0, 96 et de premier terme v0 = 500 donc pour tout entier naturel n, on a

vn = 500 × 0, 96n

Comme pour tout entier naturel n, vn = un − 2000 ⇔ un = vn + 2000 on en déduit que pour tout entier naturel n,

un = 500 × 0, 96n + 2000

Étudions le sens de variation de la suite (un). Pour tout entier n,

un+1 − un =
(

500 × 0, 96n+1 + 2000
)
− (500 × 0, 96n + 2000)

= 500 × 0, 96n+1 − 500 × 0, 96n

= 500 × 0, 96n × (0, 96 − 1)
= −20 × 0, 96n

Or pour tout entier n,−20 × 0, 96n < 0, donc pour tout entier n, un+1 − un < 0. La suite (un) est strictement
décroissante.
Enfin déterminons la limite de la suite (un). On a 0 < 0, 96 < 1 donc

lim
n→+∞

0, 96n = 0

d’où
lim

n→+∞
500 × 0, 96n + 2000 = 2000

. Soit
lim

n→+∞
un = 2000.

La suite (un) converge vers 2000 . À partir d’un certain nombre de mois, le nombre d’adhérents de l’association sera
chaque mois proche de 2000.
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4.4 Suites adjacentes

Définition 13 (Suites adjacentes).
Soient (un) et (vn) deux suites. Les suites (un) et (vn) sont adjacentes si et seulement si

• l’une des deux suite est croissante,

• et l’autre suite est decroissante,

• et vn − un tend vers 0 quand n tend vers +∞.

Théorème 12.
Deux suites adjacentes convergent et ont meme limite.

Exemple 32.
Montrons que les suites de terme general

un =
n

∑
k=0

1
k!

et vn = un +
1

n(n!)

sont adjacentes. Etudions les variations de ces deux suites.

un+1 − un =
n+1

∑
k=0

1
k!

−
n

∑
k=0

1
k!

=
n

∑
k=0

1
k!

+
1

(n + 1)!
−

n

∑
k=0

1
k!

un+1 − un =
1

(n + 1)!
> 0.

Donc la suite (un) est croissante.

vn+1 − vn = un+1 +
1

(n + 1) ((n + 1)!)
− un −

1
n(n!)

=
1

(n + 1)!
+

1
(n + 1) ((n + 1)!)

− 1
n(n!)

=
1

(n + 1)!
×
(

1 +
1

n + 1

)
− 1

n(n!)

=
1
n!

×
(

n + 2
(n + 1)2 − 1

n

)
=

1
n!

× n(n + 2)− (n + 1)2

n(n + 1)2

=
1
n!

× n2 + 2n − n2 − 2n − 1
n(n + 1)2

=
1
n!

× −1
n(n + 1)2

vn+1 − vn =
−1

n(n + 1)(n + 1)!
< 0

Donc la suite (vn) est croissante. Etudions à present la limite de vn − un.

vn − un = un +
1

n(n!)
− un =

1
n(n!)

.

On a donc
lim

n→+∞
(vn − un) = lim

n→+∞

1
n(n!)

= 0.

On peut alors conclure que les suites (un) et (vn) sont adjacentes. Elles sont donc convergentes et ont même limite.
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4.5 Suites récurrentes lineaire homogene d’ordre 2

Théorème 13 (Suites recurrentes lineaire d’ordre 2).
Soient (a, b) ∈ R × R∗ et (un) une suite definie par (u0, u1) ∈ R2 et pour tout n ∈ N

un+2 = aun+1 + bun.

L’equation
r2 − ar − b = 0

est appelee equation caracteristique.

• Si l’equation caracteristique admet deux solutions reelles distincstes r1 et r2, alors il existe deux nombres
reels λ et µ tel que pour tout n ∈ N

un = λrn
1 + µrn

2 .

• Si l’equation caracteristique admet une solution double r, alors il existe deux nombres reels λ et µ tel que
pour tout n ∈ N

un = λrn + µ nrn.

• Si l’equation caracteristique admet deux solutions complexes (non reelles) r1 = reiθ et r2 = re−iθ, avec
r > 0 et θ ∈ R alors il existe deux nombres reels λ et µ tel que pour tout n ∈ N

un = rn (λ cos(nθ) + µ sin(nθ)) .

Exemple 33.
Etudier les suites suivantes.

1. un+2 = −un+1 + 2un, avec u0 = 0, u1 = 3. L’équation caractéristique est x2 + x − 2 = 0. Elle admet pour
solutions les réels 1 et −2. Par conséquent :

∀n ∈ N, un = λ + µ(−2)n.

En remplaçant n par 0 puis par 1, nous obtenons le système suivant :{
λ + µ = 0

λ − 2µ = 3

Donc λ = 1 et µ = −1. Pour tout n ∈ N, on a alors un = 1 − (−2)n.

2. un+2 = 6un+1 − 9un, avec u0 = 5, u1 = 6. L’équation caractéristique est x2 − 6x + 9 = 0. Elle admet pour
solution double le réel 3. Par conséquent :

∀n ∈ N, un = (λ + µn)3n.

En remplaçant n par 0 puis par 1, nous obtenons le système suivant :{
λ = 5

3(λ + µ) = 6

Donc λ = 5 et µ = −3. Pour tout n ∈ N, on a alors un = 3n(−3n + 5).

3. un+2 = 9un, avec u0 = 5, u1 = 1. L’équation caractéristique est x2 − 9 = 0. Elle admet pour solutions 3i et −3i.
Par conséquent :

∀n ∈ N, un = λ3n cos
(

n
π

2

)
+ µ3n sin

(
n

π

2

)
En remplaçant n par 0 puis par 1, nous obtenons le système suivant :{

λ = 5
3µ = 1

Donc λ = 5 et µ = 1
3 . Pour tout n ∈ N, on a alors

un = 5 · 3n cos
(

n
π

2

)
+

1
3
· 3n sin

(
n

π

2

)
.
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5 Exercices
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Wolfram|Alpha est un moteur de recherche scientifique, une superbe
calculatrice à tout faire. Disponible sur le navigateur mais également
sur mobile avec une application téléchargeable sur Google Play et l’App
Store.

Etudiez en musique !
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https://www.wolframalpha.com/
https://play.google.com/store/apps/details?id=com.wolfram.android.alphapro&hl=en&pli=1
https://apps.apple.com/us/app/wolframalpha/id548861535
https://apps.apple.com/us/app/wolframalpha/id548861535
https://www.wolframalpha.com/
https://open.spotify.com/playlist/0KZGwpcrKkFicSRuAJ3CQ4?si=4670e9f1df6749e5
https://open.spotify.com/playlist/0KZGwpcrKkFicSRuAJ3CQ4?si=4670e9f1df6749e5
https://deezer.page.link/TxLR2fALBsRhxWnY9
https://deezer.page.link/TxLR2fALBsRhxWnY9
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