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Résumé

Les nombres complexes forment une extension de l’ensemble des nombres réels. Ils permettent notamment
de définir des solutions à toutes les équations polynomiales à coefficients réels. Les nombres complexes furent
introduits au XVIe siècle par les mathématiciens italiens Jérôme Cardan, Raphaël Bombelli, Nicolo Fontana, dit
Tartaglia, et Ludovico Ferrari afin d’exprimer les solutions des équations du troisième degré en toute généralité par
les formules de Cardan, en utilisant notamment des nombres de carré négatif, ainsi que les solutions des équations
du quatrième degré (méthode de Ferrari).

Nous présenterons dans ce cours les outils fondamentaux pour travailler avec les nombres complexes, les
différtentes écritures, la représentation graphique, et un lien avec la trigonométrie.
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1 Ensemble des nombres complexes

1.1 Forme algébrique

L’équation
x2 = −1

n’a pas de solution réelle. On introduit alors de nouveaux nombres appelés nombres complexes de façon que cette
équation admette deux solutions, notées i et−i.

Définition 1 (Ensemble C).
L’ensemble des nombres complexes est noté C tel que

C =
{

z = x + iy , avec (x, y) ∈ R2
}

Ce nouvel ensemble peut donc nous être utile pour décrire des éléments géométrique à deux dimensions. En particulier
tout point du plan, ou encore tout vecteur de R2, a un nombre complexe qui lui est associé.

Définition 2 (Forme Algébrique).
Pour tout z ∈ C, on a alors

z = x + iy

où (x, y) ∈ R2 . C’est la forme algébrique du nombre complexe z.

0 1

i

x

iy
x + iy

R

iR

On identifiera 1 avec le vecteur (1, 0) de R2, et i avec le vecteur (0, 1).

Remarque.
■ Le réel x est appelée partie réelle de z et est notée Re(z).

■ Le réel y est appelée partie imaginaire de z et est notée Im(z)

■ Si Im(z) = 0, c’est à dire si y = 0, alors z = x est situé sur l’axe des abscisses, que l’on identifie à R. Dans
ce cas on dira que z est réel.
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■ Si Re(z) = 0, c’est à dire si x = 0, alors z = iy est situé sur l’axe des ordonnées, que l’on identifie à iR. Dans
ce cas on dira que z est imaginaire pur.

■ Si y ̸= 0, z est dit imaginaire.

Exemple 1.
Mettre sous la forme algébrique les nombres complexes suivant :

z1 =
3 + 6i
3 − 4i

; z2 =

(
1 + i
2 − i

)2
; z3 =

2 + 5i
1 − i

+
2 − 5i
1 + i

On a pour z1,

z1 =
3 + 6i
3 − 4i

= z1 =
(3 + 6i)(3 + 4i)

32 + (−4)2 =
9 + 12i + 18i − 24

25
=

−15 + 30i
25

= −3
5
+

6
5

i

donc la partie réelle de z1 est égale à −3
5

et sa partie imaginaire vaut
6
5
. De la même façon a pour z2 :

z2 =

(
1 + i
2 − i

)2
=

(
(1 + i)(2 + i)
22 + (−1)2

)2

=

(
2 + i + 2i − 1

22 + (−1)2

)2
=

(
1 + 3i

5

)2
=

1 + 6i − 9
25

= − 8
25

+
6

25
i

On peut obtenir ce résultat par un autre chemin, par exemple

z2 =

(
1 + i
2 − i

)2
=

(1 + i)2

(2 − i)2 =
1 + 2i − 1
4 − 4i − 1

=
2i

3 − 4i
=

2i(3 + 4i)
32 + (−4)2 =

6i − 8
25

= − 8
25

+
6
25

i

Et enfin pour z3 on obtient

z3 =
2 + 5i
1 − i

+
2 − 5i
1 + i

=
(2 + 5i)(1 + i) + (2 − 5i)(1 − i)

(1 − i)(1 + i)
=

2 + 2i + 5i − 5 + 2 − 2i − 5i − 5
12 − i2

= −6
2
= −3

Remarque.
Nous avons utilisé dans l’exemple ci-dessus l’identité remarquable suivante

a2 − b2 = (a + b)(a − b)

Nous rappellons ici ces identités remarquables. Elles sont des égalités qui permettent de développer ou de factoriser
facilement une expression. Les plus classiques sont celles de degré 2, valables pour tous a, b ∈ R.

(a + b)2 = a2 + 2ab + b2

(a − b)2 = a2 − 2ab + b2

(a + b)(a − b) = a2 − b2

On utilise aussi régulierement celles de degré 3 :

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a − b)3 = a3 − 3a2b + 3ab2 − b3

a3 − b3 = (a − b)
(

a2 + ab + b2
)

Plus généralement, les deux premières formules se généralisent aux puissances n-ième avec la formule du binôme de
Newton

(a + b)n =
n

∑
k=0

(
n
k

)
akbn−k = an +

(
n
1

)
an−1b + · · ·

(
n

n − 1

)
abn−1 + bn.

Le coefficient
(

n
k

)
est appelé coefficient binomial. C’est le nombre de parties à k éléments dans un

ensemble à n éléments. Par exemple, dans un ensemble à 4 éléments {a, b, c, d}, il y a
(

4
2

)
= 6

parties à deux éléments, à savoir : {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}.
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1.2 Interprétation géométrique

Soit (x, y) ∈ R2. A chaque nombre complexe z = x + iy , on associe le point M du plan complexe (x, y).

• Le point M est appelée l’image de z et est noté M (z)

• Le nombre complexe z est appelée l’affixe de M.

• Soient M (z) et M′ (z′), on appelle affixe du vecteur
−−→
MM′ le nombre complexe z′ − z.

M(z)
y

x

M′(z′)
y′

x′

−−→
MM′

Exemple 2.
Les points A(1, 2), B(5, 7) et C(6, 3) sont reprsentés ci-dessous.

A(1 + 2i)
2

1

B(4 + 5i)
5

4

C(6 + 3i)
3

6

1.3 Opérations
L’ensemble C, ensemble des nombres complexes, possède les opérations usuelles, i.e. l’addition et la multiplication,
qui ont les mêmes propriétés que dans R.

Si z = x + iy et z′ = x′ + iy′ sont deux nombres complexes, alors on définit les opérations suivantes :

■ Addition :
(x + iy) + (x′ + iy′) = (x + x′) + i(y + y′)

0 1

i z

z′

z + z′

R

iR

■ Multiplication :
(x + iy)× (x′ + iy′) = (xx′ − yy′) + i(xy′ + yx′).

On développe en suivant les règles de la multiplication usuelle avec la convention i2 = −1.
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Exemple 3.
Soient deux points du plan A(1,−2) et B(−1, 3). Les affixes des points A et B sont respectivement

zA = 1 − 2i et zB = −1 + 3i.

On peut associer aux vecteurs
−→
OA et

−→
OB les même affixes que les point A et B. Le vecteur

−→
OA +

−→
OB a donc pour

coordonnées (1 − 1,−2 + 3) = (0, 1). Son affixe est donc z = 0 + i. En effet on a

z = zA + zB = (1 − 2i) + (−1 + 3i) = 0 + i = i.

On peut également calculer zAzB. On trouve

zAzB = (1 − 2i) (−1 + 3i)

= −1 + 3i + 2i − 6i2

zAzB = 5 + 5i

1.4 Conjugué et module

Définition 3 (Conjugué).
Soit

z = x + iy

avec (x, y) ∈ R2. On appelle conjugué de z, le nombre complexe

z = x − iy.

0

z

z̄

Remarque.
Le point M′ (z) est le symétrique du point M (z) par rapport à l’axe des abscisses.

Exemple 4.
On donne z = 3 + i

√
3 et z′ = −1 + 2i. Nous allons écrire sous forme algébrique les nombres complexes suivants :

z1 = z − z′ et z2 = z · z̄

On écrit

z1 = z − z′ = 3 +
√

3i − (−1 − 2i) = 3 +
√

3i + 1 + 2i = 4 + (
√

3 + 2)i

z2 = z · z̄ =
(

3 + i
√

3
) (

3 − i
√

3
)
= 32 + (

√
3)2 = 12

Proposition 1.
Soient z et z′ deux nombres complexes. Alors :
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■ z = z

■ Re (z) = Re (z)

■ Im (z) = −Im (z)

■ Re (z) =
z + z

2

■ Im (z) =
z − z

2i

■ z = z ⇐⇒ z ∈ R

■ z = −z ⇐⇒ z est un imaginaire pur

■ z + z′ = z + z′

■ z · z′ = z · z′

■ Si z ̸= 0, alors
(

1
z

)
=

1
z

■ Si z′ ̸= 0, alors
( z

z′
)
=

z
z′

■ Pour tout n ∈ Z, zn = (z)n

Remarque.
Soient z et z′ deux nombres complexes exprimés sous forme algébrique, avec z′ ̸= 0 .
Pour déterminer la forme algébrique du quotient

z
z′

,

il faut multiplier le numérateur et le dénominateur par z′. Cela donne :

z
z′

=
z · z′

z′ · z′
.

Cette méthode permet que le dénominateur z′ · z′ soit un réel.

Exemple 5.
Mettre sous la forme algébrique les nombres complexes suivant :

z1 =
1

(1 + 2i)(3 − i)
et z2 =

1 + 2i
1 − 2i

On a pour z1

z1 =
1

(1 + 2i)(3 − i)
=

1
3 − i + 6i + 2

=
1

5 + 5i
=

1
5
× 1

1 + i
=

1
5
× 1 − i

12 + 12 =
1
10

− 1
10

i

et pour z2

z2 =
1 + 2i
1 − 2i

=
(1 + 2i)(1 + 2i)

12 + (−2)2 =
(1 + 2i)2

5
=

1 + 4i − 4
5

= −3
5
+

4
5

i

Définition 4 (Module).
Soit

z = x + iy

avec (x, y) ∈ R2. On appelle module de z, le réel positif, noté |z|, défini par :

|z| =
√

x2 + y2

|z|

0

z = x + iy

x

y
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Remarque.
Pour un point M (z), le le module de z représente la distance OM

O

|z|

M(z)
y

x

Proposition 2.
Soient z et z′ deux nombres réels. Alors :

■ |z| = 0 ⇐⇒ z = 0

■ |z̄| = |z|

■ |Re (z)| ≤ |z|

■ |Im (z)| ≤ |z|

■ |z · z′| = |z| · |z′|

■

∣∣∣∣1z
∣∣∣∣ = 1

|z|

■ Si z ̸= 0 alors
∣∣∣ z
z′
∣∣∣ = |z|

|z′|

■ Si z′ ̸= 0 alors ∀n ∈ Z, |zn| = |z|n

Théorème 1 (Inégalité triangulaire).
Soient z et z′ deux nombres réels. Alors : ∣∣z + z′

∣∣ ≤ |z|+
∣∣z′∣∣

O

M(z)

M′(z′)

M1(z + z′)

|z + z′|

Exemple 6.
Calculer les modules des nombres complexes suivants :

1. z1 = 1 + 2i
La réponse est

|z1| =
√

12 + 22 =
√

5

2. z2 = 2 − 3i
La réponse est

|z2| =
√

22 + (−3)2 =
√

13

3. z3 = −1 − 5i
La réponse est

|z3| =
√
(−1)2 + (−5)2 =

√
26

4. z4 = 3

La réponse est

|z4| =
√

32 = 3
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5. z5 = −6

La réponse est

|z5| =
√
(−6)2 = 6

Pour un nombre réel, le module coincide avec la

valeur absolue, d’où la notation.

6. z6 = 8i

La réponse est

|z6| =
√

82 = 8

Exemple 7.
Dans un parallélogramme, la somme des carrés des diagonales égale la somme des carrés des côtés.

Si les longueurs des côtés sont notées L et ℓ et les longueurs des diagonales sont D et d alors il s’agit de montrer
l’égalité

D2 + d2 = 2ℓ2 + 2L2.

d
D

L

L

ℓ

ℓ

0

z

z′

z + z′

|z|

|z|

|z′|

|z′|

Cela devient simple si l’on considère que notre parallélogramme a pour sommets 0, z, z′ et le dernier sommet est
donc z + z′. La longueur du grand côté est ici |z|, celle du petit côté est |z′|. La longueur de la grande diagonale est
|z + z′|. Enfin il faut se convaincre que la longueur de la petite diagonale est |z − z′|.

D2 + d2 =
∣∣z + z′

∣∣2 + ∣∣z − z′
∣∣2 =

(
z + z′

)
(z + z′) +

(
z − z′

)
(z − z′)

= zz̄ + zz′ + z′ z̄ + z′z′ + zz̄ − zz′ − z′ z̄ + z′z′

= 2zz̄ + 2z′z′ = 2 |z|2 + 2
∣∣z′∣∣2

= 2ℓ2 + 2L2

2 Argument et Trigonométrie

2.1 Rappels de trigonométrie

Voici le cercle trigonométrique (de rayon 1), le sens de lecture est l’inverse du sens des aiguilles d’une montre. Les
angles remarquables sont marqués de 0 à 2π (en radian) et de 0◦ à 360◦. Les coordonnées des points correspondant
à ces angles sont aussi indiquées. On lit la valeur du cosinus sur l’axe des abscisses et celle du sinus sur l’axe des
ordonnées.

La fonction cosinus est périodique de période 2π et elle paire (donc symétrique par rapport à l’axe des ordonnées).
La fonction sinus est aussi périodique de période de 2π mais elle impaire (donc symétrique par rapport à l’origine).

x

y
cos x

sin x
0 π 2π−π 3π

+1

−1

Voici un zoom sur l’intervalle [−π, π].
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x

y

30◦

60◦
90◦

120◦

150◦

180◦

210◦

240◦
270◦

300◦

330◦

360◦

45◦135◦

225◦ 315◦

π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6

π

7π
6

5π
4

4π
3

3π
2

5π
3

7π
4

11π
6

2π

(√
3

2 , 1
2

)
(√

2
2 ,

√
2

2

)
(

1
2 ,

√
3

2

)

(
−

√
3

2 , 1
2

)
(
−

√
2

2 ,
√

2
2

)
(
− 1

2 ,
√

3
2

)

(
−

√
3

2 ,− 1
2

)
(
−

√
2

2 ,−
√

2
2

)
(
− 1

2 ,−
√

3
2

)

(√
3

2 ,− 1
2

)
(√

2
2 ,−

√
2

2

)
(

1
2 ,−

√
3

2

)

(−1, 0) (1, 0)

(0,−1)

(0, 1)

x

y

cos x

sin x
0 ππ

2
−π −π

2

+1

−1

Pour tout x n’appartenant pas à {
. . . ,−π

2
,

π

2
,

3π

2
,

5π

2
, . . .

}

la fonction tangente est définie par

tan x =
sin x
cos x

La fonction x 7→ tan x est périodique de période π, c’est une fonction impaire.
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x

y tan x

0
π
2−π

2
3π
2

π−π

+1

−1

Formulaire

Voici un lien d’une vidéo présentant un moyen simple de retenir l’intégralité du formulaire de
trigonométrie. La première relation fondamentale est

cos2(a) + sin2(a) = 1

Les formules d’additions

cos(a + b) = cos(a) · cos(b)− sin(a) · sin(b)
sin(a + b) = sin(a) · cos(b) + sin(b) · cos(a)

tan(a + b) =
tan(a) + tan(b)

1 − tan(a) · tan(b)

Il est bon de connaître par cœur les formules de duplica-
tions ci-contre (faire a = b dans les formules d’additions).

cos(2a) = 2 cos2(a)− 1 = 1 − 2 sin2 a

= cos2 a − sin2 a
sin(2a) = 2 sin(a) · cos(a)

tan(2a) =
2 tan(a)

1 − tan2(a)

Les formules de linéarisation :

cos(a) · cos(b) =
1
2
(cos(a + b) + cos(a − b))

sin(a) · sin(b) =
1
2
(cos(a − b)− cos(a + b))

sin(a) · cos(b) =
1
2
(sin(a + b) + sin(a − b))

Les formules de factorisation :

cos(p) + cos(q) = 2 cos
(

p + q
2

)
· cos

(
p − q

2

)
cos(p)− cos(q) = −2 sin

(
p + q

2

)
· sin

(
p − q

2

)
sin(p) + sin(q) = 2 sin

(
p + q

2

)
· cos

(
p − q

2

)
sin(p)− sin(q) = 2 sin

(
p − q

2

)
· cos

(
p + q

2

)
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2.2 Argument

Définition 5 (Argument).
Soit z un nombre complexe non nul. Dans le plan rapporté à un repère orthonormé

(
O;−→u ;−→v

)
, on appelle

argument de z, noté arg (z), une mesure de l’angle
(−→u ;

−−→
OM

)
où M est l’image de z.

u⃗

v⃗

O

M(z)y

x

|z|

arg(z)

L’argument d’un nombre complexe est défini à un multiple de 2π près. Autrement dit, θ et ϕ sont deux arguments
d’un meme nombre complexe non nul si et seulement si θ − φ = 2kπ avec k ∈ Z.

Si on considère deux points M et M′ respectivement d’affixe z et z′, alors

arg
(
z′ − z

)
=
(−→u ;

−−→
MM′

)
[2π] .

Proposition 3.
L’argument satisfait les propriétés suivantes :

■ arg (zz′) = arg(z) + arg (z′) [2π]

■ arg (zn) = n arg(z) [2π]

■ arg (1/z) = − arg(z) [2π]

■ arg(z̄) = − arg z [2π]

Exemple 8.
On donne θ0 un réel tel que

cos (θ0) =
2√
5

et sin (θ0) =
1√
5

.

Calculer le module et l’argument de chacun des nombres complexes suivants, en fonction de θ0.

a = 3i(2 + i)(4 + 2i)(1 + i) et b =
(4 + 2i)(−1 + i)

(2 − i)3i

On débute par calculer le module de a.

|a| = |3i(2 + i)(4 + 2i)(1 + i)|
= |3i| × |2 + i| × |4 + 2i| × |1 + i|

= 3 ×
√

22 + 12 ×
√

42 + 22 ×
√

12 + 12

|a| = 30
√

2

l’argument de a

arg(a) = arg
(

3i(2 + i)(4 + 2i)(1 + i)
)

= arg(3i) + arg(2 + i) + arg(4 + 2i) + arg(1 + i) + 2kπ

= arg(3i) + arg(2 + i) + arg(2) + arg(2 + i) + arg(1 + i) + 2kπ
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O

3i

2 + i

2

1 + i

Donc

arg(a) =
π

2
+ arg(2 + i) + arg(2(2 + i)) +

π

4
+ 2kπ

=
3π

4
+ arg(2 + i) + arg(2) + arg(2 + i) + 2kπ

=
3π

4
+ 2 arg(2 + i) + 2kπ

Soit θ un argument de 2 + i, on a alors

cos(θ) =
2√

22 + 12
=

2√
5

et sin(θ) =
1√

22 + 12
=

1√
5

donc cos(θ) = cos (θ0) et sin(θ) = sin (θ0), on en déduit que θ = θ0 + 2kπ. On peut donc écrire

arg(a) =
3π

4
+ 2θ0 + 2kπ

Calculons à présent le module de b

|b| =
∣∣∣∣ (4 + 2i)(−1 + i)

(2 − i)3i

∣∣∣∣ = |4 + 2i| × | − 1 + i|
|2 − i| × |3i| =

2 × |2 + i| ×
√
(−1)2 + 12√

22 + (−1)2 × 3
=

2 ×
√

5 ×
√

2√
5 × 3

=
2
√

2
3

et l’argument de b

arg(b) = arg(4 + 2i) + arg(−1 + i)− arg(2 − i)− arg(3i) + 2kπ

= arg(2) + arg(2 + i) + arg(−1 + i)− arg(2 − i)− arg(3i) + 2kπ

O
2

2 + i−1 + i

2 − i

3i

Donc

arg(b) = θ0 +
3π

4
− (−θ0)−

π

2
+ 2kπ

=
π

4
+ 2θ0 + 2kπ
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2.3 Forme trigonométrique

Soit z un nombre complexe non nul, tel que z = x + iy avec (x, y) ∈ R2. Posons

r = |z| et θ un argument de z

on a alors : Il y a une figure à faire ici :)

r

0 1

y

x

i

z

R

iR

θ

On a donc
x = r cos (θ) et y = r sin (θ)

La forme trigonométrique de z s’écrit
z = r (cos (θ) + i sin (θ))

Définition 6.
Soit z un nombre complexe non nul. Si r = |z| et θ un argument de z, alors la forme trigonométrique de z s’écrit

z = r (cos (θ) + i sin (θ))

Exemple 9.
Mettre sous forme trigonométrique les nombres complexes suivants :

z1 = 3 + 3i et z2 = −1 − i
√

3

On a
z1 = 3(1 + i) donc |z1| = 3|1 + i| = 3 ×

√
12 + 12 = 3

√
2

Si on ne met pas 3 en facteur

|z1| =
√

32 + 32 =
√

9 + 9 =
√

18 =
√

32 × 2 = 3
√

2

C’est moins simple.
On appelle θ1 un argument de z1

cos (θ1) =
3

3
√

2
=

1√
2
=

√
2

2
et sin (θ1) =

3
3
√

2
=

1√
2
=

√
2

2

Donc
θ1 =

π

4
+ 2kπ, k ∈ Z

d’où
z1 = 3

√
2
(

cos
(π

4

)
+ i sin

(π

4

))
Autre méthode, on met le module en facteur.

z1 = 3
√

2
(

1√
2
+ i

1√
2

)
= 3

√
2

(√
2

2
+ i

√
2

2

)
= 3

√
2
(

cos
(π

4

)
+ i sin

(π

4

))
On a

|z2| =
√
(−1)2 + (−

√
3)2 =

√
4 = 2
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Soit θ2 un argument de z2, on écrit

cos (θ2) = −1
2

et sin (θ2) = −
√

3
2

Donc θ2 = 4π
3 + 2kπ, avec k ∈ Z, d’où

z2 = 2
(

cos
(

4π

3

)
+ i sin

(
4π

3

))
Autre méthode, on met le module en facteur

z2 = 2

(
−1

2
− i

√
3

2

)
= 2

(
cos

(
4π

3

)
+ i sin

(
4π

3

))

2.4 Forme exponentielle

Définition 7.
Soit z un nombre complexe non nul. Si r = |z| et θ un argument de z, alors la forme exponentielle de z s’écrit

z = reiθ

Remarque.
On peut écrire à notre convenance eiθ ou exp (iθ). Les deux notations indiquent l’exponentielle.

Proposition 4.
Pour tout (θ, θ′) ∈ R2 on a

■ ei(θ+θ′) = eiθ · eiθ′
■ e−iθ =

1
eiθ

■ ∀n∈ N,
(
eiθ)n

= einθ

Remarque.
En utilisant la forme exponentielle d’un nombre complexe et les propriétés précédentes, on peut écrire pour z et z′,
deux nombres complexes non nuls tels que

z = reiθ et z′ = r′eiθ′

les relations suivantes

■ z · z′ = r · r′ · ei(θ+θ′)
■

1
z
=

1
r
· e−iθ ■

z
z′

=
r
r′
· ei(θ−θ′)

Exemple 10.
Soit z =

√
3 + 3i, écrit z6 sous forme algébrique. On peut calculer le module de z,

|z| =
√(√

3
)2

+ 32 =
√

12 = 2
√

3

ainsi qu’un argument de z,  cos (θ) =
√

3
2
√

3
= 1

2

sin (θ) = 3
2
√

3
=

√
3

2

donc θ = π
3 [2π]. On en déduit alors la forme exponentielle de z,

z = 2
√

3ei π
3
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D’où

z6 =
(

2
√

3
)6 (

ei π
3

)6
⇐⇒ z6 =

(
2
√

3
)6

ei π
3 ×6

⇐⇒ z6 =
(

2
√

3
)6

e2iπ

⇐⇒ z6 =
(

2
√

3
)6

car e2iπ = 1

Finalement on a z6 = 1728

Exemple 11.
Effectuer les calculs suivants en utilisant la forme exponentielle.

z1 =
1 + i
1 − i

z2 =

(
1 + i
1 − i

)3
z3 = (1 + i

√
3)4 z4 = (1 + i

√
3)5 + (1 − i

√
3)5 z5 =

1 + i
√

3√
3 + i

On a

z1 =
(1 + i)(1 + i)

12 + 12 =
1 + 2i − 1

2
= i = ei π

2

de la même façon

z2 =

(
1 + i
1 − i

)3
=
(

ei π
2

)3
= e

3iπ
2

Pour z3 on écrit

z3 = (1 + i
√

3)4 =

(
2

(
1
2
+ i

√
3

2

))4

= 24
(

ei π
3

)4
= 16e

4iπ
3

Il est nécessaire de travailler un peu plus pour z4

z4 = (1 + i
√

3)5 + (1 − i
√

3)5

=

(
2

(
1
2
+ i

√
3

2

))5

+

(
2

(
1
2
− i

√
3

2

))5

= 25
(

ei π
3

)5
+ 25

(
e−i π

3

)5

= 32
(

e
5iπ

3 + e−
5iπ

3

)
= 32 × 2 cos

(
5π

3

)
= 64

(
−1

2

)
z4 = −32

Pour z5 deux méthodes s’offrent à nous. Première méthode,

z5 =
1 + i

√
3√

3 + i
=

(1 + i
√

3)(
√

3 − i)
(
√

3)2 + 12
=

√
3 − i + 3i +

√
3

4
=

2
√

3 + 2i
4

=

√
3

2
+

1
2

i = ei π
6

et seconde méthode

z5 =
1 + i

√
3√

3 + i
=

2
(

1
2 + i

√
3

2

)
2
(√

3
2 + 1

2 i
) =

ei π
3

ei π
6
= ei( π

3 −
π
6 ) = ei π

6

2.5 Formules d’Euler et de Moivre
Soit θ ∈ R, on rappelle que

eiθ = cos (θ) + i sin (θ) et e−iθ = cos (θ)− i sin (θ)
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Définition 8 (Formules d’Euler).
Pour tout θ ∈ R on a

cos (θ) =
eiθ + e−iθ

2
et sin (θ) =

eiθ − e−iθ

2i

Définition 9 (Formule de Moivre).
Pour tout θ ∈ R, n ∈ Z, on a (

eiθ
)n

= einθ

Ainsi
(cos (θ) + i sin (θ))n = cos (nθ) + i sin (nθ)

Remarques.
■ La formule de Moivre permet, en développant (cos (θ) + i sin (θ))n, d’exprimer cos (nθ) et sin (nθ) en

fonction de puissances cos (θ) et cos (θ) .

■ Les formules d’Euler permettent de linéariser cosn (θ) et sinn (θ), c’est à dire de les exprimer linéairement en
fonction de cos (kθ) et sin (kθ) avec (0 ≤ k ≤ n).

Exemple 12.
Exprimer cos (3θ) en fonction de cos (θ) et de sin (θ) .

On rappelle que
cos (3θ) = Re

(
(cos (θ) + i sin (θ))3

)
Il vient alors que :

(cos (θ) + i sin (θ))3 = cos3 (θ) + 3 cos2 (θ)× i sin (θ) + 3 cos (θ)× (i sin (θ))2 + (i sin (θ))3

= cos3 (θ) + 3 cos2 (θ)× i sin (θ) + 3 cos (θ)× i2 sin2 (θ) + i3 sin3 (θ)

(cos (θ) + i sin (θ))3 = cos3 (θ) + 3i cos2 (θ) sin (θ)− 3 cos (θ) sin2 (θ)− i sin3 (θ)

Or cos (3θ) = Re
(
(cos (θ) + i sin (θ))3

)
D’où

cos (3θ) = cos3 (θ)− 3 cos (θ) sin2 (θ)

Exemple 13.
Linéariser sin3 (θ) en fonction de cos (θ) et de sin (θ) . Il vient alors que :

sin3 (θ) =

(
eiθ − e−iθ

2i

)3

=

(
eiθ − e−iθ)3

(2i)3

= − 1
8i

(
e3iθ − 3e2iθe−iθ + 3eiθe−2iθ − e−3iθ

)
= − 1

8i

(
e3iθ − 3eiθ + 3e−iθ − e−3iθ

)
= − 1

8i

(
e3iθ − e−3iθ − 3

(
e−iθ − eiθ

))
sin3 (θ) = − 1

8i
(2i sin (3θ)− 3 (2i sin (θ)))

D’où
sin3 (θ) = −1

4
sin (3θ) +

3
4

sin (θ) .
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3 Racines nième d’un nombre complexe

3.1 Cas général

Définition 10.
Soit n ∈ N∗, et a un nombre complexe non nul. On appelle racine nième de a, tout nombre complexe z solution
de l’équation

zn = a.

Théorème 2.
Soit n ∈ N∗ et a un nombre complexe non nul tel que

a = reiθ

où r > 0 et θ ∈ [0; 2π[. Le nombre complexe a admet n racines nièmes distinctes définies par

zk =
n
√

r exp
(

i
(

θ + 2kπ

n

))
où k ∈ {0; 1; 2; . . . ; n − 1}.

Remarque.
En effet on a

zn = a ⇐⇒ zn = reiθ

⇐⇒ z =
n√

reiθ

⇐⇒ z = n
√

r
n√

eiθ

⇐⇒ z = n
√

r eiθ/n

De plus on sait que deux nombres complexes ont le même argument à un multiple de 2π près.

Exemple 14.
Calculons les racines cubiques de a = 8i. Nous allons commencer par donner la forme exponentielle de a. Nous avons
directement

a = 8i = 8 ei π
2

Les racines cubiques de a sont les solutions de l’équation

z3 = a.

Ces solutions sont

zk =
n
√

r exp
(

i
(

θ + 2kπ

n

))
avec k ∈ {0; 1; 2}, θ = π

2 , r = 8 et n = 3. Ce qui permet d’écrire

zk =
3
√

8 exp
(

i
( π

2 + 2kπ

3

))
ou encore

zk = 2 exp
(

i
(

π

6
+

2kπ

3

))
avec toujours k ∈ {0; 1; 2}, car ici n = 3. Nous en déduisons alors que

z0 = 2 exp
(

i
(π

6

))
= 2 ei π

6 = 2
(

cos
(π

6

)
+ i sin

(π

6

))
= 2

(√
3

2
+

1
2

i

)
=

√
3 + i

z1 = 2 exp
(

i
(

π

6
+

2π

3

))
= 2 ei 5π

6 = 2
(

cos
(

5π

6

)
+ i sin

(
5π

6

))
= 2

(
−
√

3
2

+
1
2

i

)
= −

√
3 + i

z2 = 2 exp
(

i
(

π

6
+

4π

3

))
= 2 ei 3π

2 = 2
(

cos
(

3π

2

)
+ i sin

(
3π

2

))
= 2

(
0 − 1

2
i
)
= −2i
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Les racines cubiques de a = 8i sont
S =

{√
3 + i ; −

√
3 + i ; −2i

}
3.2 Interprétation géométrique
Soient n ∈ N, n ≥ 2, a un nombre complexe non nul et pour k appartenant à {0; 1; 2; . . . ; n − 1} on note

zk =
n
√

r exp
(

i
(

θ + 2kπ

n

))
les racines nièmes complexes de a.

On considère, dans le plan complexe muni d’un repère d’origine O, les points Ak d’affixe zk. On a,

|zk| =
∣∣∣∣ n
√

r exp
(

i
(

θ + 2kπ

n

))∣∣∣∣ = n
√

r

Ce qui permet d’écrire,
OAk =

n
√

r
De plus ∀k ∈ {0; 1; 2; . . . ; n − 1},

zk+1
zk

=
n
√

r ei
(

θ+2(k+1)π
n

)
n
√

r ei( θ+2kπ
n )

=
ei
(

θ+2(k+1)π
n

)
ei( θ+2kπ

n )
=

ei( θ
n ) · ei( 2kπ

n ) · ei( 2π
n )

ei( θ
n ) · ei( 2kπ

n )
= ei( 2π

n )

Pour passer du point d’afixe zk à zk+1 sur le cercle de centre O et de rayon n
√

r, il suffit d’effectuer une rotation

d’angle
2π

n
dans le sens trigonométrique.

On peut alors introduire le théorème suivant.

Théorème 3.
Soient

■ n un entier naturel srtrictement supérieur à 2,

■ a = reiθ un nombre complexe non nul,

■ C le cercle de centre O et de rayon n
√

r.

Les images des n racines nièmes de a sont les n sommets d’un polygone régulier inscrit dans le cercle C .

Remarque.
Si n = 2, les images des deux racines carrées de a sont diamétralement opposées sur le cercle C .

Exemple 15.
On prend a = 1, on obtient alors les n racines n-ièmes de l’unité e2ikπ/n, k ∈ {0, . . . , n − 1}.

0 1 = e0

ij = e2iπ/3

j2 = e4iπ/3

Racine 3-ième de l’unité (a = 1, n = 3)

0 1
−1 = eiπ

i
eiπ/3

e−iπ/3

Racine 3-ième de −1 (a = −1, n = 3)

3.3 Racines n-ièmes de l’unité
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Définition 11.
Soit n ∈ N∗. On appelle racine n-ième de l’unité toute racine nième de 1.

Théorème 4.
Soit n ∈ N, 1 admet n racines n-ièmes distinctes définies par

ωk = ei 2kπ
n

où k ∈ {0; 1; 2; . . . ; n}.

Exemple 16.
Les deux racines carrées de l’unité sont définies par

ωk = ei 2kπ
2

où k ∈ {0; 1}. Ainsi :
ω0 = ei 2×0π

2 = e0 = 1 ; ω1 = ei 2×1π
2 = eiπ = −1 .

Exemple 17.
Les racines cubiques de l’unité sont définies par

ωk = ei 2kπ
3

où k ∈ {0; 1; 2}. Ainsi :

ω0 = ei 2×0π
3 = e0 = 1 ; ω1 = ei 2×1π

3 = ei 2π
3 = j ; ω2 = ei 2×2π

3 = ei 4π
3 = j2 = j .

Proposition 5.
Soit n ∈ N , n ≥ 2, la somme des n racines n-ièmes de l’unité est nulle.

Exemple 18.
Les racines cinquième de l’unité sont définies par

ωk = ei 2kπ
5

où k ∈ {0; 1; 2; 3; 4}. Graphiquement on a :

0 1

i e2iπ/5

e4iπ/5

e6iπ/5

e8iπ/5

Les racines 5-ième de l’unité (a = 1, n = 5) forment un pentagone régulier.

4 Racines carrées d’un nombre complexe et équations du second degré

4.1 Calcul des racines carrées
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Définition 12.
Tout nombre complexe Z non nul admet deux racines carrées opposées.

Nous allons déterminer de manière algébrique les racines carrées d’un nombre complexe. Posons

Z = a + ib

avec (a, b) ∈ R2. On cherche
z = x + iy

où (x, y) ∈ R2 tel que
z2 = Z.

On a
z2 = (x + iy)2 = x2 + 2ixy + i2y2 = x2 − y2 + 2ixy

On peut alors écrire

z2 = Z ⇐⇒
{

x2 − y2 = a
2xy = b

De plus
∣∣z2
∣∣ = |z|2 = |Z| permet d’écrire

|z|2 = |Z| ⇐⇒ x2 + y2 =
√

a2 + b2

On a donc

z2 = Z ⇐⇒


x2 − y2 = a

x2 + y2 =
√

a2 + b2

2xy = b

Exemple 19.
Déterminons les racines carrées de

Z = 3 − 4i.

On pose z = x + iy avec (x, y) ∈ R2 tel que
z2 = Z

Ainsi z2 = x2 − y2 + 2ixy, de plus
∣∣z2
∣∣ = |z|2 = |Z|. On obtient le système suivant

z2 = Z ⇐⇒

 x2 − y2 = 3
x2 + y2 = 5
2xy = −4

⇐⇒

 x2 − y2 = 3
x2 + y2 + x2 − y2 = 5 + 3
xy = −2

⇐⇒

 x2 − y2 = 3
2x2 = 8
xy = −2

⇐⇒

 x2 − y2 = 3
x2 = 4
xy = −2

⇐⇒

 4 − y2 = 3
x2 = 4
xy = −2

⇐⇒

 y2 = 1
x2 = 4
xy = −2

z2 = Z ⇐⇒

 y = 1 ou y = −1
x = 2 ou x = −2
xy = −2

Les deux racines carrées de Z sont alors z1 = −2 + i et z2 = 2 − i
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Exemple 20.

Calculer les racines carrées de Z =
1 + i√

2
. En déduire les valeurs de cos

(π

8

)
et sin

(π

8

)
.

On pose z = x + iy avec (x, y) ∈ R2 tel que
z2 = Z

Ainsi z2 = x2 − y2 + 2ixy, de plus
∣∣z2
∣∣ = |z|2 = |Z|. On peut alors écrire

z2 = Z ⇐⇒


x2 − y2 =

1√
2
=

√
2

2
x2 + y2 = 1

2xy =
1√
2
=

√
2

2

⇐⇒



2x2 = 1 +

√
2

2

2y2 = 1 −
√

2
2

xy =

√
2

4

z2 = Z ⇐⇒



x2 =
2 +

√
2

4

y2 =
2 −

√
2

4

xy =

√
2

4

Les valeurs possibles de X sont ±
√

2 +
√

2
2

et les valeurs possibles de y sont ±
√

2 −
√

2
2

, d’après l’équation

xy =

√
2

4
, on en déduit que xy > 0 et que donc x et y sont de même signe.

■ Si x =

√
2 +

√
2

2
alors y =

√
2−

√
2

2 et

z1 =

√
2 +

√
2

2
+ i

√
2 −

√
2

2

■ Si x = −
√

2+
√

2
2 alors y = −

√
2−

√
2

2 et

z2 = −
√

2 +
√

2
2

− i

√
2 −

√
2

2

D’autre part

Z =

√
2

2
+ i

√
2

2
= ei π

4 = z2

admet deux solutions

z3 = ei π
8 = cos

(π

8

)
+ i sin

(π

8

)
et z4 = −ei π

8 = − cos
(π

8

)
− i sin

(π

8

)
Comme

cos
(π

8

)
> 0 et sin

(π

8

)
> 0

on a

cos
(π

8

)
+ i sin

(π

8

)
=

√
2 +

√
2

2
+ i

√
2 −

√
2

2
⇐⇒


cos

(π

8

)
=

√
2 +

√
2

2

sin
(π

8

)
=

√
2 −

√
2

2
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4.2 Application à la résolution des équations du second degré dans C

Proposition 6.
L’équation du second degré

az2 + bz + c = 0

avec a, b, c ∈ C et a ̸= 0, possède deux solutions z1, z2 ∈ C. Soit

∆ = b2 − 4ac

le discriminant et δ ∈ C tel que
∆ = δ2

Alors les solutions sont
z1 =

−b + δ

2a
et z2 =

−b − δ

2a

Démonstration. On écrit la factorisation

az2 + bz + c = a
(

z2 +
b
a

z +
c
a

)
= a

((
z +

b
2a

)2
− b2

4a2 +
c
a

)

= a

((
z +

b
2a

)2
− ∆

4a2

)

= a

((
z +

b
2a

)2
− δ2

4a2

)

= a
((

z +
b

2a

)
− δ

2a

)((
z +

b
2a

)
+

δ

2a

)
= a

(
z − −b + δ

2a

)(
z − −b − δ

2a

)
= a (z − z1) (z − z2)

Donc le polynôme s’annule si et seulement si z = z1 ou z = z2.

Exemple 21.
Nous allon résoudre dans C l’équation

2z2 − (1 + 5i) z − 2 (1 − i) = 0

On a
∆ = (1 + 5i)2 − 4 × 2 × (−2 (1 − i)) = 1 + 10i − 25 + 16 − 16i = −8 − 6i.

D’où

δ2 = −8 − 6i ⇐⇒


x2 − y2 = −8

x2 + y2 =
√
(−8)2 + (−6)2

2xy = −6

⇐⇒

 x2 − y2 = −8
x2 + y2 = 10
xy = −3

⇐⇒

 x2 = −8 + y2

x2 + y2 = 10
xy = −3

⇐⇒

 x2 = −8 + y2

−8 + y2 + y2 = 10
xy = −3
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δ2 = −8 − 6i ⇐⇒

 x2 = −8 + y2

y2 = 9
xy = −3

⇐⇒

 x2 = −8 + 9
y2 = 9
xy = −3

⇐⇒

 x2 = 1
y2 = 9
xy = −3

δ2 = −8 − 6i ⇐⇒

 x = 1 ou x = −1
y = 3 ou y = −3
xy = −3

Les deux racines carrées de ∆ sont alors

δ1 = 1 − 3i et δ2 = −1 + 3i

Les solutions de l’équation sont donc :

z1 =
1 + 5i + δ1

4
=

1 + 5i + 1 − 3i
4

=
1 + i

2
et z2 =

1 + 5i − δ1

4
=

1 + 5i − (1 − 3i)
4

= 2i

5 Exercices

Vous pouvez continuer à vous exercer sur votre espace jai20enmaths,
où vous y retrouverez des notions de cours ainsi que des exercices
corrigés. Si vous remarquez une erreur ou avez une suggestion pour
que cet espace de travail soit plus agréable à utiliser, ne surtout pas
hésiter à me le signaler par mail à a.gere@istom.fr.

Exercice 1 Forme algébrique - Somme et produits

Mettre sous forme algébrique les nombres complexes suivants :

1. z1 = (2 + 5i) + (i + 3)

2. z2 = 4(−2 + 3i) + 3(−5 − 8i)

3. z3 = (2 − i)(3 + 8i)

4. z4 = (1 − i)(1 + i)

5. z5 = i(1 − 3i)2

6. z6 = (1 + i)3

Indication H Correction H [14.0121]

Exercice 2
Mettre sous la forme algébrique a + ib avec a, b ∈ R les nombres complexes suivants

1. z1 =
3 + 6i
3 − 4i

2. z2 =

(
1 + i
2 − i

)2

3. z3 =
2 + 5i
1 − i

+ 2−5i
1+i

4. z4 =
5 + 2i
1 − 2i

5. z5 =

(
−1

2
+ i

√
3

2

)3

6. z6 =
(1 + i)9

(1 − i)7

7. z7 = − 2
1 − i

√
3

8. z8 =
1

(1 + 2i)(3 − i)

9. z9 =
1 + 2i
1 − 2i
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Correction H [14.0038]

Exercice 3
Mettre sous la forme a + ib (a, b ∈ R) les nombres

3 + 6i
3 − 4i

;
(

1 + i
2 − i

)2
+

3 + 6i
3 − 4i

;
2 + 5i
1 − i

+
2 − 5i
1 + i

.

Indication H Correction H [14.0019]

Exercice 4
Ecrire sous la forme a + ib les nombres complexes suivants :

1. Nombre de module 2 et d’argument π/3.

2. Nombre de module 3 et d’argument −π/8.

Indication H Correction H [14.0020]

Exercice 5
Effectuer les calculs suivants :

1. (3 + 2i)(1 − 3i).

2. Produit du nombre complexe de module 2 et d’argument π/3 par le nombre complexe de module 3 et d’argu-
ment −5π/6.

3.
3 + 2i
1 − 3i

.

4. Quotient du nombre complexe de module 2 et d’argument π/3 par le nombre complexe de module 3 et
d’argument −5π/6.

Correction H [14.0021]

Exercice 6

Calculer le module et l’argument de u =

√
6 − i

√
2

2
et v = 1 − i. En déduire le module et l’argument de w =

u
v
.

Indication H Correction H [14.0023]

Exercice 7

On donne θ0 un réel tel que cos (θ0) =
2√
5

et sin (θ0) =
1√
5
. Calculer, en fonction de θ0, le module et l’argument

des nombres complexes

a = 3i(2 + i)(4 + 2i)(1 + i) et b =
(4 + 2i)(−1 + i)

(2 − i)3i
.

Correction H [14.0037]

Exercice 8
Ecrire sous forme algébrique les nombres complexes suivants
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1. z1 = 2e
2iπ

3

2. z2 =
√

2ei π
8

3. z3 = 3e−
7iπ

8

4. z4 =
(

2e
iπ
4

) (
e−

3iπ
4

)
5. z5 =

2e
iπ
4

e−
3iπ

4

6. z6 =
(

2ei π
3

) (
3e

5iπ
6

)

7. z7 =
2e

iπ
3

3e−
5iπ

6

8. z8, le nombre de module 2 et d’argument
π

3

9. z9 le nombre de module 3 et d’argument −π

8
.

Correction H [14.0039]

Exercice 9
Effectuer les calculs suivants en utilisant la forme exponentielle.

1. z1 =
1 + i
1 − i

2. z2 =

(
1 + i
1 − i

)3

3. z3 = (1 + i
√

3)4

4. z4 = (1 + i
√

3)5 + (1 − i
√

3)5

5. z5 =
1 + i

√
3√

3 + i

6. z6 =

√
6 − i

√
2

2 − 2i

Correction H [14.0045]

Exercice 10
Effectuer les calculs suivants :

1. (3 + 2i)(1 − 3i)

2. Produit du nombre complexe de module 2 et d’argument
π

3
par le nombre complexe de module 3 et d’argument

−5π

6
.

3. Quotient du nombre complexe de modulo 2 et d’argument
π

3
par le nombre complexe de module 3 et d’argument

−5π

6
.

Correction H [14.0041]

Exercice 11
Linéariser les expressions suivantes.

1. A(x) = cos3(x)

2. B(x) = sin3(x)

3. C(x) = cos4(x)

4. D(x) = sin4(x)

5. E(x) = cos2(x) sin2(x)

6. F(x) = cos(x) sin3(x)

7. G(x) = cos3(x) sin(x)

8. H(x) = cos3(x) sin2(x)

9. I(x) = cos2(x) sin3(x)

10. J(x) = cos(x) sin4(x)

Correction H [14.0089]
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Exercice 12
Soit u = 1 + i et v = −1 + i

√
3.

1. Déterminer les modules de u et v.

2. Déterminer un argument de u et un argument de v.

3. En déduire le module et un argument pour chacune des racines cubiques de u.

4. Déterminer le module et un argument de u
v .

5. En déduire les valeurs de cos
(
−5π

12

)
et sin

(
−5π

12

)
Correction H [14.0043]

Exercice 13
Etablir les égalités suivantes :

1.
(

cos
(π

7

)
+ i sin

(π

7

))(1 − i
√

3
2

)
(1 + i) =

√
2
(

cos
(

5π

84

)
+ i sin

(
5π

84

))

2. (1 − i)
(

cos
(π

5

)
+ i sin

(π

5

))
(
√

3 − i) = 2
√

2
(

cos
(

13π

60

)
− i sin

(
13π

60

))

3.

√
2
(
cos

(
π
12
)
+ i sin

(
π
12
))

1 + i
=

√
3 − i
2

Correction H [14.0042]

Exercice 14
Calculer les racines carrées des nombres suivants.

1. z1 = −1

2. z2 = i

3. z3 = 1 + i

4. z4 = −1 − i

5. z5 = 1 + i
√

3

6. z6 = 3 + 4i

7. z7 = 7 + 24i

8. z8 = 3 − 4i

9. z9 = 24 − 10i

Correction H [14.0046]

Exercice 15

1. Calculer les racines carrées de
1 + i√

2
. En déduire les valeurs de cos

(π

8

)
et sin

(π

8

)
.

2. Calculer les racines carrées de

√
3 + i
2

. En déduire les valeurs de cos
( π

12

)
et sin

( π

12

)
.

Correction H [14.0047]

Exercice 16
Résoudre dans C les équations suivantes :
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1. z2 + z + 1 = 0

2. z2 − (5i + 14)z + 2(5i + 12) = 0

3. z2 −
√

3z − i = 0

4. z2 − (1 + 2i)z + i − 1 = 0

5. z2 − (3 + 4i)z − 1 + 5i = 0

6. 4z2 − 2z + 1 = 0

7. z4 + 10z2 + 169 = 0

8. z4 + 2z2 + 4 = 0

9. x4 − 30x2 + 289 = 0

10. x4 + 4x3 + 6x2 + 4x − 15 = 0

11. z3 + 3z − 2i = 0

12. z2 − (1 + a)(1 + i)z +
(
1 + a2) i = 0

13. iz2 + (1 − 5i)z + 6i − 2 = 0

14. (1 + i)z2 − (3 + i)z − 6 + 4i = 0

15. (1 + 2i)z2 − (9 + 3i)z − 5i + 10 = 0

16. (1 + 3i)z2 − (6i + 2)z + 11i − 23 = 0

Correction H [14.0048]

Exercice 17
Résoudre dans C l’équation z6 − iz3 − 1 − i = 0.

Indication H Correction H [14.0052]
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Indication pour l’exercice 1 N

Attention ! Il y a un symbole de conjugaison dans z4.
Pour les deux premiers exemples, il suffit de regrouper. Pour les produits, il faut développer puis regrouper.

Indication pour l’exercice 3 N

Pour se "débarrasser" d’un dénominateur écrivez

z1

z2
=

z1

z2
· z̄2

z̄2
=

z1z̄2

|z2|2

Indication pour l’exercice 4 N

Il faut bien connaître ses formules trigonométriques. En particulier si l’on connait cos(2θ) ou sin(2θ) on sait calculer
cos θ et sin θ.

Indication pour l’exercice 6 N

Passez à la forme trigonométrique. Souvenez-vous des formules sur les produits de puissances :

eiaeib = ei(a+b) et eia/eib = ei(a−b).

Indication pour l’exercice 17 N

Poser Z = Z3 et résoudre d’abord Z2 − iZ − 1 − i = 0.
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Correction de l’exercice 1 N

1. On regroupe simplement les parties réelles et les parties imaginaires. On trouve

z1 = 5 + 6i

2. De la même façon,

z2 = (−8 + 12i) + (−15 − 24i) = −23 − 12i

3. On développe, puis on regroupe pour trouver :

z3 = 6 + 16i − 3i + 8 = 14 + 13i

4. On écrit

z4 = (1 − i)(1 − i) = 1 − 2i − 1 = −2i

5. On commence par calculer (1 − 3i)2 :

(1 − 3i)2 = 1 − 2 × 1 × 3i + (3i)2 = 1 − 6i − 9 = −8 − 6i

On multiplie ensuite par i :

i(1 − 3i)2 = −8i − 6i2 = 6 − 8i

6. Le plus simple est de tout développer, en utilisant la formule du binôme de Newton ou, pour ceux qui ne la
connaissent pas (encore), en écrivant (1 + i)3 = (1 + i)2(1 + i). On trouve

z6 = (1 + i)3

= (1 + i)2(1 + i)

=
(

1 + 2i + i2
)
(1 + i)

= (1 + 2i − 1)(1 + i)
= 2i(1 + i)

= 2i + 2i2

= −2 + 2i

Avec la formule du binôme, on écrit simplement

z6 = (1 + i)3 = 1 + 3i + 3i2 + i3 = 1 + 3i − 3 − i = −2 + 2i

Correction de l’exercice 2 N

z1 =
3 + 6i
3 − 4i

= z1 =
(3 + 6i)(3 + 4i)

32 + (−4)2 =
9 + 12i + 18i − 24

25
=

−15 + 30i
25

= −3
5
+

6
5

i

z2 =

(
1 + i
2 − i

)2
=

(
(1 + i)(2 + i)
22 + (−1)2

)2

=

(
2 + i + 2i − 1

22 + (−1)2

)2
=

(
1 + 3i

5

)2
=

1 + 6i − 9
25

= − 8
25

+
6

25
i

Autre méthode
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z2 =

(
1 + i
2 − i

)2
=

(1 + i)2

(2 − i)2 =
1 + 2i − 1
4 − 4i − 1

=
2i

3 − 4i
=

2i(3 + 4i)
32 + (−4)2 =

6i − 8
25

= − 8
25

+
6
25

i

z3 =
2 + 5i
1 − i

+
2 − 5i
1 + i

=
(2 + 5i)(1 + i) + (2 − 5i)(1 − i)

(1 − i)(1 + i)
=

2 + 2i + 5i − 5 + 2 − 2i − 5i − 5
12 − i2

= −6
2
= −3

Autre méthode

z3 =
2 + 5i
1 − i

+
2 − 5i
1 + i

=
2 + 5i
1 − i

+
2 + 5i
1 − i

= 2Re
(

2 + 5i
1 − i

)
Or

2 + 5i
1 − i

=
(2 + 5i)(1 + i)

12 + (−1)2 =
2 + 2i + 5i − 5

2
=

−3 + 7i
2

= −3
2
+

7
2

i

Donc

z3 = 2 ×
(
−3

2

)
= −3

z4 =
5 + 2i
1 − 2i

=
(5 + 2i)(1 + 2i)

12 + (−2)2 =
5 + 10i + 2i − 4

5
=

−1 + 12i
5

= −1
5
+

12
5

i

z5 =

(
−1

2
+ i

√
3

2

)3

=

(
−1

2

)3
+ 3

(
−1

2

)2
(

i
√

3
2

)
+ 3

(
−1

2

)(
i
√

3
2

)2

+

(
i
√

3
2

)3

= −1
8
+ 3 × 1

4
× i

√
3

2
− 3

2
×
(
−3

4

)
− i

3
√

3
8

= −1
8
+ i

3
√

3
8

+
9
8
− i

3
√

3
8

= 1

Autre méthode

z5 =

(
−1

2
+ i

√
3

2

)3

=
(

e
2iπ

3

)3
= e2iπ = 1

Ou encore

z5 = j3 = 1

z6 =
(1 + i)9

(1 − i)7

On peut toujours s’amuser à développer (1 + i)9 et (1 − i)7 mais franchement ce n’est pas une bonne idée.

z6 =
(1 + i)9

(1 − i)7 = (1 + i)2 (1 + i)7

(1 − i)7 = (1 + i)2
(

1 + i
1 − i

)7
= (1 + 2i − 1)

(
(1 + i)(1 + i)
12 + (−1)2

)7

= 2i
(

1 + 2i − 1
2

)7
=

2i(2i)7

27 =
28i8

27 = 2i8 = 2

Autre méthode

z6 =
(1 + i)9

(1 − i)7 =

(√
2
(√

2
2 + i

√
2

2

))9

(√
2
(√

2
2 − i

√
2

2

))7 =
(
√

2)9
(

ei π
4

)9

(
√

2)7
(

e−i π
4

)7 =
(
√

2)2ei 9π
4

e−i 7π
4

= 2ei( 9π
4 + 7π

4 ) = 2e
16iπ

4 = 2e4iπ

=2

z7 = − 2
1 − i

√
3
= − 2(1 + i

√
3)

12 + (−
√

3)2
= −2(1 + i

√
3)

4
= −1

2
− i

√
3

2

Autre méthode
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z7 = − 2
1 − i

√
3
=

1

− 1
2 + i

√
3

2

=
1
j
=

j2

j3
= j2 = −1

2
− i

√
3

2

z8 =
1

(1 + 2i)(3 − i)
=

1
3 − i + 6i + 2

=
1

5 + 5i
=

1
5
× 1

1 + i
=

1
5
× 1 − i

12 + 12 =
1
10

− 1
10

i

z9 =
1 + 2i
1 − 2i

=
(1 + 2i)(1 + 2i)

12 + (−2)2 =
(1 + 2i)2

5
=

1 + 4i − 4
5

= −3
5
+

4
5

i

Correction de l’exercice 3 N

Remarquons d’abord que pour z ∈ C, zz = |z|2 est un nombre réel, ce qui fait qu’en multipliant le dénominateur
par son conjugué nous obtenons un nombre réel.

3 + 6i
3 − 4i

=
(3 + 6i)(3 + 4i)
(3 − 4i)(3 + 4i)

=
9 − 24 + 12i + 18i

9 + 16
=

−15 + 30i
25

= −3
5
+

6
5

i.

Calculons

1 + i
2 − i

=
(1 + i)(2 + i)

5
=

1 + 3i
5

,

et (
1 + i
2 − i

)2
=

(
1 + 3i

5

)2
=

−8 + 6i
25

= − 8
25

+
6

25
i.

Donc (
1 + i
2 − i

)2
+

3 + 6i
3 − 4i

= − 8
25

+
6
25

i − 3
5
+

6
5

i = −23
25

+
36
25

i.

Soit z =
2 + 5i
1 − i

. Calculons z + z, nous savons déjà que c’est un nombre réel, plus précisément : z = −3
2
+

7
2

i et

donc z + z = −3.

Correction de l’exercice 4 N

1. z1 = 2ei π
3 = 2(cos π

3 + i sin π
3 ) = 2( 1

2 + i
√

3
2 ) = 1 + i

√
3.

2. z2 = 3e−i π
8 = 3 cos π

8 − 3i sin π
8 = 3

√
2+

√
2

2 − 3i
√

2−
√

2
2 .

Il nous reste à expliquer comment nous avons calculé cos π
8 et sin π

8 : posons θ = π
8 , alors 2θ = π

4 et donc

cos(2θ) =
√

2
2 = sin(2θ). Mais cos(2θ) = 2 cos2 θ − 1. Donc cos2 θ = cos(2θ)+1

2 = 1
4 (2 +

√
2). Et ensuite

sin2 θ = 1 − cos2 θ = 1
4 (2 −

√
2). Comme 0 ≤ θ = π

8 ≤ π
2 , cos θ et sin θ sont des nombres positifs. Donc

cos
π

8
=

1
2

√
2 +

√
2 , sin

π

8
=

1
2

√
2 −

√
2.

Correction de l’exercice 5 N

1. 9 − 7i

2. −6i

3. −0, 3 + 1, 1i
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4. −
√

3
3

− i
3

Correction de l’exercice 6 N

Nous avons

u =

√
6 −

√
2i

2
=

√
2

(√
3

2
− i

2

)
=

√
2
(

cos
π

6
− i sin

π

6

)
=

√
2e−i π

6 .

puis

v = 1 − i =
√

2e−i π
4 .

Il ne reste plus qu’à calculer le quotient :

u
v
=

√
2e−i π

6
√

2e−i π
4
= e−i π

6 +i π
4 = ei π

12 .

Correction de l’exercice 7 N

|a| =| 3i(2 + i)(4 + 2i)(1 + i)| = |3i| × |2 + i| × |4 + 2i| × |1 + i|

= 3 ×
√

22 + 12 × 2 × |2 + i| ×
√

12 + 12 = 6
(√

22 + 12
)2

×
√

2 = 6 × 5
√

2

= 30
√

2

arg(a) = arg(3i(2 + i)(4 + 2i)(1 + i)) = arg(3i) + arg(2 + i) + arg(4 + 2i) + arg(1 + i) + 2kπ

=
π

2
+ arg(2 + i) + arg(2(2 + i)) +

π

4
+ 2kπ

=
3π

4
+ arg(2 + i) + arg 2 + arg(2 + i) + 2kπ =

3π

4
+ 2 arg(2 + i) + 2kπ

Soit θ un argument de 2 + i, cos(θ) = 2√
22+12 = 2√

5
et sin(θ) = 1√

22+12 = 1√
5

donc cos(θ) = cos (θ0) et
sin(θ) = sin (θ0), on en déduit que θ = θ0 + 2kπ
Par suite

arg(a) =
3π

4
+ 2θ0 + 2kπ

|b| =
∣∣∣∣ (4 + 2i)(−1 + i)

(2 − i)3i

∣∣∣∣ = |4 + 2i| × | − 1 + i|
|2 − i| × |3i| =

2 × |2 + i| ×
√
(−1)2 + 12√

22 + (−1)2 × 3
=

2 ×
√

5 ×
√

2√
5 × 3

=
2
√

2
3

arg(b) = arg(4 + 2i) + arg(−1 + i)− arg(2 − i)− arg(3i) + 2kπ = θ0 +
3π

4
− (−θ0)−

π

2
+ 2kπ

=
π

4
+ 2θ0 + 2kπ

Correction de l’exercice 8 N
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z1 = 2
(

cos
(

2π

3

)
+ i sin

(
2π

3

))
= 2

(
−1

2
+ i

√
3

2

)
= −1 + i

√
3

z2 =
√

2
(

cos
(π

8

)
+ i sin

(π

8

))
=

√
2 cos

(π

8

)
+ i

√
2 sin

(π

8

)
z3 = 3e−

7iπ
8 = 3

(
cos

(
−7π

8

)
+ i sin

(
−7π

8

))
= 3 cos

(
7π

8

)
− 3i sin

(
7π

8

)
= 3 cos

(
π − π

8

)
− 3i sin

(
π − π

8

)
= −3 cos

(
−π

8

)
− 3i sin

(
−π

8

)
= −3 cos

(π

8

)
+ 3i sin

(π

8

)
z4 =

(
2e

iπ
4

) (
e−

3iπ
4

)
= 2ei( π

4 −
3π
4 ) = 2e−i π

2 = −2i

z5 =
2e

iπ
4

e−
3iπ

4
= 2ei( π

4 +
3π
4 ) = 2eiπ = −2

z6 =
(

2ei π
3

) (
3e

5iπ
6

)
= 6ei( π

3 +
5π
6 ) = 6e

7iπ
6 = 6

(
cos

(
7π

6

)
+ i sin

(
7π

6

))
= 6

(
−
√

3
2

− 1
2

i

)

z7 =
2
√

3 − 3i

3e
iπ
3

=
2
3

ei( π
3 +

5π
6 ) =

2
3

e
8iπ

6 =
2
3

e
4iπ

3 =
2
3

(
−1

2
− i

√
3

2

)
= −1

3
− i

√
3

3

z8 = 2ei π
3 = 2

(
cos

(π

3

)
+ i sin

(π

3

))
= 2

(
1
2
+ i

√
3

2

)
= 1 + i

√
3

z9 = 3e−i π
8 = 3

(
cos

(
−π

8

)
+ i sin

(
−π

8

))
= 3 cos

(π

8

)
− 3i sin

(π

8

)
A moins de connaitre cos

(
π
8
)

et sin
(

π
8
)

on ne peut pas faire mieux.

Correction de l’exercice 9 N

z1 =
(1 + i)(1 + i)

12 + 12 =
1 + 2i − 1

2
= i = ei π

2

z2 =

(
1 + i
1 − i

)3
=
(

ei π
2

)3
= e

3iπ
2

z3 = (1 + i
√

3)4 =

(
2

(
1
2
+ i

√
3

2

))4

= 24
(

ei π
3

)4
= 16e

4iπ
3

z4 = (1 + i
√

3)5 + (1 − i
√

3)5 =

(
2

(
1
2
+ i

√
3

2

))5

+

(
2

(
1
2
− i

√
3

2

))5

= 25
(

ei π
3

)5
+ 25

(
e−i π

3

)5

= 32
(

e
5iπ

3 + e−
5iπ

3

)
= 32 × 2 cos

(
5π

3

)
= 64

(
−1

2

)
= −32

z5 =
1 + i

√
3√

3 + i
=

(1 + i
√

3)(
√

3 − i)
(
√

3)2 + 12
=

√
3 − i + 3i +

√
3

4
=

2
√

3 + 2i
4

=

√
3

2
+

1
2

i = ei π
6

Autre méthode

z5 =
1 + i

√
3√

3 + i
=

2
(

1
2 + i

√
3

2

)
2
(√

3
2 + 1

2 i
) =

ei π
3

ei π
6
= ei( π

3 −
π
6 ) = ei π

6

z6 =

√
6 − i

√
2

2 − 2i
=

(
√

6 − i
√

2)(2 + 2i)
22 + (−2)2 =

2
√

6 + 2i
√

6 − 2i
√

2 + 2
√

2
8

=
2
√

6 + 2
√

2 + 2i(
√

6 −
√

2)
8

=

√
6 +

√
2 + i(

√
6 −

√
2)

4
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Remarque : il aurait mieux valu mettre
√

2
2 en facteur d’entrée.

Là on est mal parti, il va falloir trouver le module, puis le mettre en facteur,

z6 =

√
6 +

√
2 + i(

√
6 −

√
2)

4
=

√
2

4
(
√

3 + 1 + i(
√

3 − 1))

|z6| =
√

2
4

√
(
√

3 + 1)2 + (
√

3 − 1)2 =

√
2

4

√
3 + 2

√
3 + 1 + 3 − 2

√
3 + 1 =

√
2

4

√
8 =

√
2

4
× 2

√
2 = 1

z6 =

√
6 +

√
2

4
+ i

√
6 −

√
2

4
= cos(θ) + i sin(θ)

Mais on ne connait pas d’angle vérifiant cela. Il faut faire autrement

|
√

6 − i
√

2| =
√
(
√

6)2 + (
√

2)2 =
√

8 = 2
√

2

|2 − 2i| =
√

22 + (−2)2 =
√

8 = 2
√

2

z6 =

√
6 − i

√
2

2 − 2i
=

2
√

2
(√

3
2 − 1

2 i
)

2
√

2
(√

2
2 − i

√
2

2

) =
e−i π

6

e−i π
4
= ei(− π

6 +
π
4 ) = ei π

12

Correction de l’exercice 10 N

1. (3 + 2i)(1 − 3i) = 3 − 9i + 2i − 6i2 = 3 − 7i + 6 = 9 − 7i

2.

2ei π
3 × 3ei(− 5π

6 ) = 6ei( π
3 −

5π
6 ) = 6ei(− π

2 ) = −6i

3.

2ei π
3

3ei(− 5π
6 )

=
2
3

ei π
3 e

5iπ
6 =

2
3

ei( π
3 +

5π
6 ) =

2
3

e
7iπ

6

Correction de l’exercice 11 N

A(X) =

(
eix + e−ix

2

)3

=
e3ix + 3e2ixe−ix + 3eixe−2ix + e−3ix

8

=
e3ix + e−3ix + 3

(
eix + e−ix)

8
=

2 cos(3x) + 3 × 2 cos(x)
8

=
1
4

cos(3x) +
3
4

cos(x)
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B(x) =
(

eix − e−ix

2i

)3

=
e3ix − 3e2ixe−ix + 3eixe−2ix − e−3ix

−8i

=
e3ix − e−3ix − 3

(
eix − e−ix)

−8i
=

2i sin(3x)− 3 × 2i sin(x)
−8i

= −1
4

sin(3x) +
3
4

sin(x)

C(X) =

(
eix + e−ix

2

)4

=
e4ix + 4e3ixe−ix + 6e2ixe−2ix + 4eixe−3ix + e−4ix

16

=
e4ix + e−4ix + 4

(
e2ix + 4e−2ix)+ 6

16
=

2 cos(4x) + 4 × 2 cos(2x) + 6
16

=
1
8

cos(4x) +
1
2

cos(2x) +
3
8

=
e4ix + e−4ix − 4

(
e2ix + 4e−2ix)+ 6

16
=

2 cos(4x)− 4 × 2 cos(2x) + 6
16

D(X) =

(
eix − e−ix

2i

)4

=
e4ix − 4e3ixe−ix + 6e2ixe−2ix − 4eixe−3ix + e−4ix

16

E(x) = cos2(x) sin2(x) =
(

eix + e−ix

2

)2 ( eix − e−ix

2i

)2

=
e2ix + 2eixe−ix + e−2ix

4
× e2ix − 2eixe−ix + e−2ix

82x
=

(
e2ix + 2 + e−2ix) (e2ix − 2 + e−2ix)

−16

=
e2ixe2ix − 2e2ix + e2ixe−2ix + 2e2ix − 4 + 2e−2ix + e−2ixe2ix − 2e−2ix + e−2ixe−2ix

−16

=
e4ix − 2e2ix + 1 + 2e2ix − 4 + 2e−2ix + 1 − 2e−2ix + e−4ix

−16
=

e4ix + e−4ix − 2
−16

=
2 cos(4x)− 2

−16
= −1

8
cos(4x) +

1
8

Autre méthode en utilisant les formules trigonométriques

E(x) = cos2(x) sin2(x) = (cos(x) sin(x))2 =

(
1
2

sin(2x)
)2

=
1
4

sin2(2x) =
1
4
× 1 − cos(4x)

2

= −1
8

cos(4x) +
1
8

En utilisant les formules

sin(2a) = 2 sin(a) cos(a), a = x

cos(2a) = 1 − sin2(a) ⇔ sin2(a) =
1 − cos(2a)

2
, a = 2x

F(x) = cos(x) sin3(x) = cos(x)B(x) =
eix + e−ix

2
× e3ix − 3eix + 3e−ix − e−3ix

−8i

=
e4ix − 3e2ix + 3 − e−2ix + e2ix − 3 + 3e−2ix − e−4ix

−16i

=
e4ix − e−4ix − 2

(
e2ix − e−2ix)

−16i
=

2i sin(4x)− 2 × 2i sin(2x)
−16i

= −1
8

sin(4x) +
1
4

sin(2x)
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G(x) = cos3(x) sin(x) = A(x) sin(x) =
e3ix + 3eix + 3e−ix + e−3ix

8
× eix − e−ix

2i

=
e4ix − e2ix + 3e2ix − 3 + 3 − 3e−2ix + e−2ix − e−4ix

16i

=
e4ix − e−4ix + 2

(
e2ix − e−2ix)

16i
=

2i sin(4x) + 2 × 2i sin(2x)
16i

=
1
8

sin(4x) +
1
4

sin(2x)

On peut toujours faire « comme d’habitude » améliorons un peu les choses

H(x) = cos3(x) sin2(x) = cos(x)(cos(x) sin(x))2 = cos(x)
(

1
2 sin(2x)

)2
= 1

4 cos(x) sin2(2x)

= 1
4 cos(x)

(
1−cos(4x)

2

)
= 1

8 cos(x)(1 − cos(4x)) = 1
8 cos(x)− 1

8 cos(x) cos(4x)

Alors on utilise des formules souvent inconnues des étudiants (et c’est fort dommage) ou on fait comme d’habitude

H(x) =
1
8

cos(x)− 1
8

cos(x) cos(4x) =
1
8

cos(x)− 1
8

(
eix + e−ix

2

)(
e4ix + e−4ix

2

)
=

1
8

cos(x)− 1
32

(
e5ix + e−3ix + e3ix + e−5ix

)
=

1
8

cos(x)− 1
32

(
e5ix + e−5ix + e−3ix + e3ix

)
=

1
8

cos(x)− 1
32

(
2 cos(5x) + 2 cos(3x) =

1
8

cos(x)− 1
16

cos(5x)− 1
16

cos(3x)

I(x) = cos2(x) sin3(x)

Allez, encore une autre technique !
On pose t = π

2 − x ⇔ x = t − π
2 ainsi cos(x) = cos

(
t − π

2
)
= sin(t) et sin(x) = sin

(
t − π

2
)
= cos(t) Donc

I(x) = sin2(t) cos3(t) =
1
8

cos(t)− 1
16

cos(5t)− 1
16

cos(3t)

=
1
8

cos
(

x − π

2

)
− 1

16
cos

(
5
(

x − π

2

))
− 1

16
cos

(
3
(

x − π

2

))
=

1
8

sin(x)− 1
16

cos
(

5x − 5π

2

)
− 1

16
cos

(
3x − 3π

2

)
=

1
8

sin(x)− 1
16

cos
(

5x − π

2

)
− 1

16
cos

(
3x +

π

2

)
=

1
8

sin(x)− 1
16

sin(5x) +
1
16

sin(3x)

J(x) = cos(x) sin4(x) = cos(x)D(x) =
eix + e−ix

2
× e4ix + e−4ix − 4e2ix − 4e−2ix + 6

16

=
1

32

(
e5ix + e−3ix − 4e3ix − 4e−ix + 6eix + e3ix + e−5ix − 4eix − 4e−3ix + 6e−ix

)
=

1
32

(
e5ix + e−5ix − 3

(
e3ix + e−3ix

)
+ 2

(
eix + e−ix

))
=

1
32

(2 cos(5x)− 3 × cos(3x) + 2 × 2 cos(x))

=
1

16
cos(5x)− 3

32
cos(3x) +

1
8

cos(x)

Correction de l’exercice 12 N

cf également correction manuscrite.

1. |u| =
√

12 + 12 =
√

2 et |v| =
√
(−1)2 +

√
3

2
= 2
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2.

u =
√

2

(√
2

2
+ i

√
2

2

)
=

√
2ei π

4

Donc un argument de u est π
4 .

v = 2

(
−1

2
+ i

√
3

2

)
= 2e

2iπ
3

Donc un argument de v est 2π
3 .

3. On cherche les solutions complexes de z3 = u

z3 = u ⇔
{

|z3| =
√

2
arg(z3) = π

4 + 2kπ, k ∈ Z
⇔
{

|z|3 = 2
1
2

3 arg(z) = π
4 + 2kπ, k ∈ Z

⇔
{

|z| = 2
1
6

arg(z) = π
12 + 2kπ

3 , k ∈ {0, 1, 2}

u admet trois racines cubiques

z0 = 2
1
6 ei π

12 ; z1 = 2
1
6 ei( π

12+
2π
3 ) = 2

1
6 ei 9π

12 = 2
1
6 e

3iπ
4 et z2 = 2

1
6 ei( π

12+
4π
3 ) = 2

1
6 e

17iπ
12

4.

u
v
=

√
2ei π

4

2e
2iπ

3
=

√
2

2
ei( π

4 −
2π
3 ) =

√
2

2
e−

5iπ
12 =

√
2

2

(
cos

(
−5π

12

)
+ i sin

(
−5π

12

))
Et

u
v
=

1 + i
−1 + i

√
3
=

(1 + i)(−1 − i
√

3)
4

=
−1 +

√
3 + i(−1 −

√
3)

4

Par conséquent


√

2
2 cos(− 5π

12 ) =
−1+

√
3

4√
2

2 sin(− 5π
12 ) =

−1−
√

3
4

⇔

 cos
(
− 5π

12
)
= −1+

√
3

2
√

2
= −

√
2+

√
6

4

sin
(
− 5π

12
)
= −1−

√
3

2
√

2
= −

√
2−

√
6

4

Correction de l’exercice 13 N

1.

(
cos

(π

7

)
+ i sin

(π

7

))(1 − i
√

3
2

)
(1 + i) = ei π

7 e−i π
3
√

2

(√
2

2
+ i

√
2

2

)
=

√
2ei π

7 e−i π
3 ei π

4

=
√

2ei( π
7 −

π
3 +

π
4 ) =

√
2ei( 12π

84 − 28π
84 + 21π

84 ) =
√

2e
5π
84 =

√
2
(

cos
(

5π

84

)
+ i sin

(
5π

84

))
2.
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(1 − i)
(

cos
(π

5

)
+ i sin

(π

5

))
(
√

3 − i) =
√

2

(√
2

2
− i

√
2

2

)(
cos

(π

5

)
+ i sin

(π

5

))
2

(√
3

2
− 1

2
i

)
= 2

√
2e−i π

4 ei π
5 e−i π

6 = 2
√

2ei(− π
4 +

π
5 −

π
6 ) = 2

√
2ei(− 15π

60 + 12π
60 − 10π

60 ) = 2
√

2e−
13iπ

60

= 2
√

2
(

cos
(

13π

60

)
− i sin

(
13π

60

))
√

2
(
cos

(
π
12
)
+ i sin

(
π
12
))

1 + i
=

cos
(

π
12
)
+ i sin

(
π
12
)

√
2

2 +
√

2
2 i

=
e

iπ
12

e
iπ
4
= ei( π

12−
π
4 ) = e−

2iπ
12 = e−

iπ
6

= cos
(π

6

)
− i sin

(π

6

)
=

√
3

2
− 1

2
i

Correction de l’exercice 14 N

On cherche les nombres complexes tels que z2 = −1

Z1 = −i et Z2 = i

On cherche les nombres complexes tels que z2 = i = e
iπ
2

z1 = −ei π
4 = −

√
2

2
− i

√
2

2
et z2 = ei π

4 =

√
2

2
+ i

√
2

2

On cherche les nombres complexes tels que z2 = 1 + i =
√

2
(√

2
2 + i

√
2

2

)
= 2

1
2 e

iπ
4

Z1 = −2
1
4 e

iπ
8 et Z2 = 2

1
4 e

iπ
8

C’est un peu insuffisant parce que l’on ne connait pas les valeurs de cos
(

π
8
)

et de sin
(

π
8
)

Autre méthode, on cherche
a, b ∈ R tels que

(a + ib)2 = 1 + i ⇔ a2 − b2 + 2iab = 1 + i ⇔
L1

L2

{
a2 − b2 = 1

2ab = 1

On rajoute l’équation L3∣∣∣(a + ib)2
∣∣∣ = |1 + i| ⇔ |a + ib|2 =

√
12 + 12 ⇔

(√
a2 + b2

)2
=

√
2 ⇔ a2 + b2 =

√
2

En faisant la somme de L1 et de L3

2a2 = 1 +
√

2 ⇔ a2 =
1
2
+

√
2

2
⇔ a = ±

√
1 +

√
2

2
= ±

√
2 + 2

√
2

4
= ±

√
2 + 2

√
2

2

En faisant la différence de L3 et de L1

2b2 = −1 +
√

2 ⇔ b2 = −1
2
+

√
2

2
⇔ b = ±

√
−1 +

√
2

2
= ±

√
−2 + 2

√
2

4
= ±

√
−2 + 2

√
2

2

D’après L2a et b sont de même signe donc les deux solutions de z2 = 1 + i sont

Z1 =

√
2 + 2

√
2

2
+ i

√
−2 + 2

√
2

2
et Z2 = −

√
2 + 2

√
2

2
− i

√
−2 + 2

√
2

2

On cherche les nombres complexes tels que z2 = −1 − i =
√

2
(
−

√
2

2 − i
√

2
2

)
= 2

1
2 e

5iπ
4

Z1 = −2
1
4 e

5iπ
8 et Z2 = 2

1
4 e

5iπ
8

C’est un peu insuffisant parce que l’on ne connait pas les valeurs de cos
( 5π

8
)

et de sin
( 5π

8
)

Autre méthode, on cherche a, b ∈ R tels que
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(a + ib)2 = −1 − i ⇔ a2 − b2 + 2iab = −1 − i ⇔
L1

L2

{
a2 − b2 = −1

2ab = −1

On rajoute l’équation L3∣∣∣(a + ib)2
∣∣∣ = | − 1 − i| ⇔ |a + ib|2 =

√
(−1)2 + (−1)2 ⇔

(√
a2 + b2

)2
=

√
2 ⇔ a2 + b2 =

√
2

En faisant la somme de L1 et de L3

2a2 = −1 +
√

2 ⇔ a2 = −1
2
+

√
2

2
⇔ a = ±

√
−1 +

√
2

2
= ±

√
−2 + 2

√
2

4
±
√
−2 + 2

√
2

2

En faisant la différence de L3 et de L1

2b2 = 1 +
√

2 ⇔ b2 =
1
2
+

√
2

2
⇔ b = ±

√
1 +

√
2

2
= ±

√
2 + 2

√
2

4
±
√

2 + 2
√

2
2

D’après L2a et b sont de signes opposés donc les deux solutions de z2 = −1 − i sont

Z1 =

√
−2 + 2

√
2

2
− i

√
2 + 2

√
2

2
et Z2 = −

√
−2 + 2

√
2

2
+ i

√
2 + 2

√
2

2

On cherche les nombres complexes tels que z2 = 1 + i
√

3 = 2
(

1
2 + i

√
3

2

)
= 2ei π

3

Z1 =
√

2ei π
6 =

√
2

(√
3

2
+

1
2

i

)
=

√
6

2
+ i

√
2

2
et Z2 = −

√
2ei π

6 =
√

2

(√
3

2
+

1
2

i

)
= −

√
6

2
− i

√
2

2

On cherche les nombres complexes tels que Z2 = 3 + 4i

On pose Z = a + ib, Z2 ⇔ 3 + 4i = (a + ib)2 ⇔ 3 + 4i = a2 − b2 + 2iab ⇔ L1

 a2 − b2 = 3
L2

2ab = 4
On rajoute l’équation

∣∣Z2
∣∣⇔ |3 + 4i| = a2 + b2 ⇔ a2 + b2 =

√
32 + 42 ⇔ a2 + b2 =

√
25 = 5L3

Avec le système
{

a2 − b2 = 3
a2 + b2 = 5

, en faisant la somme des deux équations L1 et L3, on trouve 2a2 = 8 ⇔ a2 = 4,

d’où l’on tire b2 = 1. Les valeurs possibles de a sont ±2 et les valeurs possibles de b sont ±1, d’après l’équation
2ab = 4 ⇔ ab = 2, on en déduit que ab > 0 et que donc a et b sont de même signe. Si a = 2 alors b = 1 et
Z1 = 2 + i et si a = −2 alors b = −1 et Z2 = −2 − i
Deuxième méthode
3 + 4i = 4 + 4i − 1 = (2 + i)2 et on retrouve le même résultat.
Troisième méthode
On reprend le système

{
a2 − b2 = 3

2ab = 4 ⇔
{

a2 − ( 2
a )

2 = 3
b = 2

a
⇔
{

a2 − 4
a2 = 3

b = 2
a

⇔
{

a4 − 4 = 3a2

b = 2
a

⇔
{

a4 − 3a2 − 4 = 0
b = 2

a

⇔
{

A2 − 3A − 4 = 0
b = 2

a

Les solutions de A2 − 3A − 4 = 0 sont A1 = −1 < 0 et A2 = 4, donc a2 = 4,
Si a = −2 alors b = 2

a = −1 et alors Z2 = −2 − i, si a = 2 alors b = 2
a = 1 et alors Z1 = 2 + i.

On cherche les nombres complexes tels que Z2 = −7 − 24i
On pose Z = a + ib, Z2 ⇔ −7 − 24i = (a + ib)2 ⇔ −7 − 24i = a2 − b2 + 2iab ⇔ L1

{
a2 − b2 = −7

L2{2ab = −24
On rajoute l’équation∣∣∣Z2

∣∣∣⇔ |3 + 4i| = a2 + b2 ⇔ a2 + b2 =
√
(−7)2 + (−24)2 ⇔ a2 + b2 =

√
49 + 576 =

√
625

= 25L3
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Avec le système
{

a2 − b2 = −7
a2 + b2 = 25

, en faisant la somme des deux équations L1 et L3, on trouve 2a2 = 18 ⇔ a2 = 9,

d’où l’on tire b2 = 16. Les valeurs possibles de a sont ±3 et les valeurs possibles de b sont ±4, d’après l’équation
2ab = −24 ⇔ ab = −12, on en déduit que ab < 0 et que donc a et b sont de signe opposé.
Si a = 3 alors b = −4 et Z1 = 3 − 4i et si a = −3 alors b = 4 et Z2 = −3 + 4i
Deuxième méthode
−7 − 24i = 9 − 24i − 16 = (3 − 4i)2 et on retrouve le même résultat.
Troisième méthode
On reprend le système{

a2 − b2 = −7
2ab = −24 ⇔

{
a2 − (−12

a )2 = −7
b = − 12

a
⇔
{

a2 − 144
a2 = −7

b = − 12
a

⇔
{

a4 − 144 = −7a2

b = − 12
a

⇔
{

a4 + 7a2 − 144 = 0
b = − 12

a
⇔
{

A2 + 7A − 144 = 0
b = − 12

a

Les solutions de A2 + 7A − 144 = 0 sont A1 = −16 < 0 et A2 = 9, donc a2 = 9,
Si a = 3 alors b = − 12

a = −4 et alors Z2 = 3 − 4i, si a = 3 alors b = − 12
a = −4 et alors Z1 = −3+ 4i.

On cherche les nombres complexes tels que Z2 = 3 − 4i = z8, on peut refaire comme précédemment mais on va
prendre la méthode la plus simple

Z2 = 3 − 4i = 4 − 4i − 1 = (2 − i)2

Il y a deux solutions

Z1 = 2 − i et Z2 = −2 + i

On cherche les complexes Z tels que Z2 = z9 = 24 − 10i
Là encore, on va aller au plus simple

24 − 10i = 25 − 10i − 1 = (5 − i)2

Donc il y a deux solutions

Z1 = 5 − i et Z2 = −5 + i

Correction de l’exercice 15 N

1. On cherche les complexes Z tels que

Z2 =
1 + i√

2
=

√
2

2
+ i

√
2

2

On pose Z = a + ib,

Z2 =

√
2

2
+ i

√
2

2
⇔

√
2

2
+ i

√
2

2
= (a + ib)2 ⇔

√
2

2
+ i

√
2

2
= a2 − b2 + 2iab ⇔

[
L1
L2

{
a2 − b2 =

√
2

2
2ab =

√
2

2

On rajoute l’équation

∣∣∣Z2
∣∣∣⇔ ∣∣∣∣∣

√
2

2
+ i

√
2

2

∣∣∣∣∣ = a2 + b2 ⇔ a2 + b2 =

√√√√(√
2

2

)2

+

(√
2

2

)2

⇔ a2 + b2 =

√
1
2
+

1
2
= 1L3

Avec le système

{
a2 − b2 =

√
2

2
a2 + b2 = 1

, en faisant la somme des deux équations L1 et L3, on trouve

40 - 50



2a2 = 1 +

√
2

2
⇔ a2 =

2 +
√

2
4

En faisant la différence de L3 et de L1

2b2 = 1 −
√

2
2

⇔ b2 =
2 −

√
2

4

Les valeurs possibles de a sont ±
√

2+
√

2
2 et les valeurs possibles de b sont ±

√
2−

√
2

2 , d’après l’équation 2ab =
√

2
2 ⇔

ab =
√

2
4 , on en déduit que ab > 0 et que donc a et b sont de même signe.

Si a =

√
2+

√
2

2 alors b =

√
2−

√
2

2 et Z1 =

√
2+

√
2

2 + i
√

2−
√

2
2

Et si a = −
√

2+
√

2
2 alors b = −

√
2−

√
2

2 et Z2 = −
√

2+
√

2
2 − i

√
2−

√
2

2
D’autre part

Z2 =

√
2

2
+ i

√
2

2
= ei π

4

Admet deux solutions Z3 = ei π
8 = cos

(
π
8
)
+ i sin

(
π
8
)

et Z4 = −ei π
8 = − cos

(
π
8
)
− i sin

(
π
8
)

Comme cos
(

π
8
)
> 0 et que sin

(
π
8
)
> 0,

cos
(π

8

)
+ i sin

(π

8

)
=

√
2 +

√
2

2
+ i

√
2 −

√
2

2
⇔

 cos
(

π
8
)
=

√
2+

√
2

2

sin
(

π
8
)
=

√
2−

√
2

2

2. On cherche les complexes Z tels que

Z2 =

√
3 + i
2

=

√
3

2
+

1
2

i

On pose Z = a + ib,

Z2 =

√
3

2
+

1
2

i ⇔
√

3
2

+
1
2

i = (a + ib)2 ⇔
√

3
2

+
1
2

i = a2 − b2 + 2iab ⇔ L1

 a2 − b2 =
√

3
2

L2
2ab = 1

2

On rajoute l’équation

∣∣∣Z2
∣∣∣⇔ ∣∣∣∣∣

√
3

2
+

1
2

i

∣∣∣∣∣ = a2 + b2 ⇔ a2 + b2 =

√√√√(√
3

2

)2

+

(
1
2

)2
⇔ a2 + b2 =

√
3
4
+

1
4
= 1L3

Avec le système

{
a2 − b2 =

√
3

2
a2 + b2 = 1

, en faisant la somme des deux équations L1 et L3, on trouve

2a2 = 1 +

√
3

2
⇔ a2 =

2 +
√

3
4

En faisant la différence de L3 et de L1

2b2 = 1 −
√

3
2

⇔ b2 =
2 −

√
3

4

Les valeurs possibles de a sont ±
√

2+
√

3
2 et les valeurs possibles de b sont ±

√
2−

√
3

2 , d’après l’équation 2ab =
√

3
2 ⇔

ab =
√

3
4 , on en déduit que ab > 0 et que donc a et b sont de même signe.

Si a =

√
2+

√
3

2 alors b =

√
2−

√
3

2 et Z1 =

√
2+

√
3

2 + i
√

2−
√

3
2

Et si a = −
√

2+
√

3
2 alors b = −

√
2−

√
3

2 et Z2 = −
√

2+
√

3
2 − i

√
2−

√
3

2
D’autre part
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Z2 =

√
3

2
+

1
2

i = ei π
6

Admet deux solutions Z3 = ei π
12 = cos

(
π
12
)
+ i sin

(
π
12
)

et Z4 = −ei π
12 = − cos

(
π
12
)
− i sin

(
π
12
)

Comme cos
(

π
12
)
> 0 et que sin

(
π
12
)
> 0,

cos
( π

12

)
+ i sin

( π

12

)
=

√
2 +

√
3

2
+ i

√
2 −

√
3

2
⇔

 cos
(

π
12
)
=

√
2+

√
3

2

sin
(

π
12
)
=

√
2−

√
3

2

Correction de l’exercice 16 N

1. z2 + z + 1 = 0

∆ = 12 − 4 = −3 = (i
√

3)2

z1 =
−1 − i

√
3

2
= j̄ = j2

z2 =
−1 + i

√
3

2
= j

2. z2 − (5i + 14)z + 2(5i + 12) = 0

∆ = (−(5i + 14))2 − 4 × 2(5i + 12)
= (−25 + 140i + 196)− 40i − 96 = 75 + 100i
= 25(3 + 4i)

= 52(3 + 4i)

On cherche a, b ∈ R tels que

(a + ib)2 = 5 − 4i ⇐⇒
L1

L2

L3


a2 − b2 = 3

2ab = 4
a2 + b2 =

√
32 + 42 = 5

En faisant L1 + L3 on trouve que 2a2 = 8 ⇔ a2 = 4 ⇔ a = ±2
En faisant L3 − L2 on trouve que 2b2 = 2 ⇔ b2 = 1 ⇔ b = ±1
D’après L2a et b sont de même signe donc a + ib = 2 + i ou a + ib = −2 − i
Autre méthode 3 + 4i = 4 + 4i − 1 = (2 + i)2

et alors

∆ = 52(2 + i)2 = (10 + 5i)2

Les solutions de l’équation sont

z1 =
5i + 14 − (10 + 5i)

2
=

4
2
= 2

z1 =
5i + 14 + (10 + 5i)

2
=

24 + 10i
2

= 12 + 5i
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3. z2 −
√

3z − i = 0

∆ = 3 + 4i = (2 + i)2

z1 =

√
3 + 2 + i

2
=

√
3

2
+ 1 +

1
2

i = 1 − i

(
−1

2
+ i

√
3

2

)
= 1 − ij

z2 =

√
3 − 2 − i

2
=

√
3

2
− 1 − 1

2
i = −1 + i

(
−1

2
− i

√
3

2

)
= −1 + ij2

4. z2 − (1 + 2i)z + i − 1 = 0

∆ = (1 + 2i)2 − 4(i − 1) = 1 + 4i − 4 − 4i + 4 = 1

z1 =
1 + 2i − 1

2
= i

z2 =
1 + 2i + 1

2
= 1 + i

5. z2 − (3 + 4i)z − 1 + 5i = 0

Le discriminant vaut

∆ = (−(3 + 4i))2 − 4(−1 + 5i) = 9 + 24i − 16 + 4 − 20i = −3 − 4i = (1 − 2i)2

Il y a deux solutions

z1 =
3 + 4i − (1 − 2i)

2
= 2 + 3i

z2 =
3 + 4i + 1 − 2i

2
= 2 + i

6. 4z2 − 2z + 1 = 0

Soit on résout «normalement», soit on ruse, rusons

4z2 − 2z + 1 = 0 ⇔ Z2 + Z + 1 = 0

Avec Z = −2z. Les solutions de Z2 + Z + 1 = 0 sont connues (et puis on vient de les revoir dans 1◦ ))

Z1 = j et Z2 = j2

Par conséquent

z1 = −1
2

j et z2 = −1
2

j2

7. z4 + 10z2 + 169 = 0

On pose Z = z2, Z2 + 10Z + 169 = 0 a pour discriminant

∆ = 102 − 4 × 169 = 102 − (2 × 13)2 = (10 − 26)(10 + 26) = −16 × 36 = −42 × 62 = (24i)2

Z1 =
−10 + 24i

2
= −5 + 12i

Z2 =
−10 − 24i

2
= −5 − 12i

On cherche z = a + ib tel que
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z2 = Z1 ⇔ (a + ib)2 = −5 + 12i ⇔ a2 − b2 + 2iab = −5 + 12i

a2 − b2 = −5
2ab = 12
⇔ L1

L2

L3

{
2a

a2 + b2 =
√
(−5)2 + 122 =

√
25 + 144 =

√
169 = 13

En faisant la somme de L1 et de L3, on trouve que 2a2 = 8 ⇔ a2 = 4 ⇔ a = ±2,
En faisant la différence de L3 et de L1, on trouve que 2b2 = 18 ⇔ b2 = 9 ⇔ b = ±3,
D’après L2, a et b sont de même signe donc z2 = Z1 a deux solutions

z1 = 2 + 3i et z2 = −2 − 3i

On peut résoudre de la même façon Z2 = z2 ou dire que z4 + 10z2 + 169 = 0 est une équation à coefficients
réels et que donc si une racine complexe est solution alors son conjugué est aussi solution, par conséquent
z1 = 2 − 3i et z2 = −2 + 3i sont aussi solution, ce qui donne 4 solutions pour une équation de degré 4 , il n’y
en a pas plus, on les a toutes.

8. z4 + 2z2 + 4 = 0

On peut faire comme dans le 7◦ ), mais rusons :

z4 + 2z2 + 4 = 0 ⇔ z4

4
+

z2

2
+ 1 = 0 ⇔

(
z2

2

)2

+

(
z2

2

)
+ 1 = 0 ⇔

[(
z2

2

)
− j
] [(

z2

2

)
− j2

]
= 0

⇔
[(

z√
2

)2
− j4

] [(
z√
2

)2
− j2

]
= 0 ⇔

(
z√
2
− j2

)(
z√
2
+ j2

)(
z√
2
− j
)(

z√
2
+ j
)
= 0

⇔
(

z −
√

2j2
) (

z +
√

2j2
)
(z −

√
2j)(z +

√
2j) = 0

Les solutions sont {√
2j2,−

√
2j2,

√
2j,−

√
2j
}

9. x4 − 30x2 + 289 = 0

On pose X = x2

X2 − 30X + 289 = 0

∆ = 302 − 4 × 289 = 900 − 1156 = −256 = −162 = (16i)2

X1 =
30 − 16i

2
= 15 − 8i

X2 = 15 + 8i

On cherche x tel que x2 = 15 − 8i = 16 − 8i − 1 = (4 − i)2

Il y a donc deux solutions x1 = 4 − i et x2 = −(4 − i) = −4 + i.
De même on cherche x tel que x2 = 15 + 8i = 16 + 8i − 1 = (4 + i)2

Il y a donc deux solutions x3 = 4 + i et x4 = −(4 + i) = −4 − i.
Les solutions sont

{4 − i,−4 + i, 4 + i,−4 − i}
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10. x4 + 4x3 + 6x2 + 4x − 15 = 0

Il faudrait trouver des solutions (réelles ou complexes).
x = 1 est solution évidente, mais ensuite cela ne vient pas, mais en regardant mieux on s’aperçoit que 4
premiers termes ressemblent fort au développement de (x + 1)4 = x4 + 4x3 + 6x2 + 4x + 1 donc

x4 + 4x3 + 6x2 + 4x − 15 = 0 ⇔ (x + 1)4 − 1 − 15 = 0 ⇔ (x + 1)4 = 16

⇔
{

|(x + 1)4| = 16
arg((x + 1)4) = arg(16) + 2kπ, k ∈ Z

⇔
{

|x + 1|4 = 24

4 arg(x + 1) = 0 + 2kπ, k ∈ Z

⇔
{

|x + 1| = 2
arg(x + 1) = 2kπ

4 , k ∈ {0, 1, 2, 3} ⇔ xk + 1 = 2e
ikπ
2 ,

k ∈ {0, 1, 2, 3} ⇔ xk = −1 + 2e
ikπ
2 , k ∈ {0, 1, 2, 3}

x0 = −1 + 2 = 1; x1 = −1 + 2ei π
2 = −1 + 2i;

x2 = −1 + 2eiπ = −1 − 2 = −3; x3 = −1 + 2e
3iπ

2 = −1 − 2i

Sont les solutions.

11. z3 + 3z − 2i = 0

On voit que i est une solution évidente ( car i3 + 3i − 2i = 0 ) donc on peut mettre z − i en facteur.

z3 + 3z − 2i = (z − i)
(

az2 + bz + c
)
⇔ z3 + 3z − 2i = az3 + (−ia + b)z2 + (−ib + c)z − ic

⇔


a = 1

−ia + b = 0
−ib + c = 3
−ic = −2i

⇔


a = 1

b = ia = i
c = 3 + ib = 2

c = 2

z3 + 3z − 2i = (z − i)
(

z2 + iz + 2
)

Le discriminant de z2 + iz + 2 est ∆ = i2 − 4 × 2 = −9 = (3i)2

Il y a deux solutions

z =
−i − 3i

2
= −2i et z =

−i + 3i
2

= i

Il y a donc deux solutions, z1 = i et z2 = −2i.

12.
∆ = (1 + a)2(1 + i)2 − 4

(
1 + a2

)
i =

(
1 + 2a + a2

)
(1 + 2i − 1)− 4i − 4ia2

= 2i + 4ia + 2ia2 − 4i − 4ia2 = −2i + 4ia − 2ia2 = −2i
(

1 − 2a + a2
)

= (1 − i)2(1 − a)2 = ((1 − i)(1 − a))2

z1 =
(1 + a)(1 + i)− (1 − i)(1 − a)

2
=

1 + i + a + ia − (1 − a − i + ia)
2

= a + i

z1 =
(1 + a)(1 + i) + (1 − i)(1 − a)

2
=

1 + i + a + ia + 1 − a − i + ia
2

= 1 + ia

13. ∆ = (1 − 5i)2 − 4i(6i − 2) = 1 − 25 − 10i + 24 + 8i = −2i

Il faut trouver δ tel que ∆ = δ2

Première méthode :
−2i = 1 − 2i − 1 = (1 − i)2 c’est une identité remarquable. Donc δ1 = 1 − i ou δ2 = −1 + i Deuxième
méthode
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On pose δ = a + ib, ∆ = δ2 ⇔ −2i = (a + ib)2 ⇔ −2i = a2 − b2 + 2iab ⇔
{

a2 − b2 = 0
2ab = −2

On rajoute l’équation |∆| =
∣∣δ2
∣∣⇔ |− 2i| = a2 + b2 ⇔ 2 = a2 + b2

Avec le système
{

a2 − b2 = 0
a2 + b2 = 2

, en faisant la somme des deux équations, on trouve 2a2 = 2 ⇔ a2 = 1,

d’où l’on tire b2 = 1. Les valeurs possibles de a sont ±1 et les valeurs possibles de b sont ±1, d’après
l’équation 2ab = −2 ⇔ ab = −1, on en déduit que ab < 0 et que donc a et b sont de signe opposé.
Si a = 1 alors b = −1 et δ = 1 − i et si a = −1 alors b = 1 et δ = −1 + i. Ce sont bien les mêmes solutions
qu’avec la première méthode.
Troisième méthode
∆ = −2i = 2e

3iπ
2 , donc les racines deuxièmes de ∆ sont δ =

√
2e

3iπ
4 =

√
2
(
cos

( 3π
4
)
+ i sin

( 3π
4
))

=
√

2
(
−

√
2

2 + i
√

2
2

)
= −1 + i et δ = −

√
2e

3iπ
4 = 1 − i.

Pour résoudre iz2 + (1 − 5i)z + 6i − 2 = 0, on n’a besoin que d’une racine deuxième, on prend, par exemple
δ = 1 − i.
Les deux solutions sont :

z1 =
−(1 − 5i)− (1 − i)

2i
=

−2 + 6i
2i

=
−1 + 3i

i
=

(−1 + 3i)(−i)
i(−i)

= 3 + i

z2 =
−(1 − 5i) + (1 − i)

2i
=

4i
2i

= 2

14.
∆ = (−(3 + i))2 − 4(1 + i)(−6 + 4i) = (3 + i)2 − 4(−6 + 4i − 6i − 4)
= 9 − 1 + 6i − 4(−10 − 2i) = 8 + 6i + 40 + 8i = 48 + 14i

On pose δ = a + ib, ∆ = δ2 ⇔ 48 + 14i = (a + ib)2 ⇔ 48 + 14i = a2 − b2 + 2iab ⇔
{

a2 − b2 = 48
2ab = 14

On rajoute l’équation

|∆| =
∣∣∣δ2
∣∣∣⇔||48 + 14i| = a2 + b2 ⇔ 2|24 + 7i| = a2 + b2 ⇔ a2 + b2 = 2

√
242 + 72 ⇔ a2 + b2

= 2
√

576 + 49 ⇔ a2 + b2 = 2
√

625 = 2 × 25 = 50

Avec le système
{

a2 − b2 = 48
a2 + b2 = 50

, en faisant la somme des deux équations, on trouve 2a2 = 98 ⇔ a2 = 49,

d’où l’on tire b2 = 1. Les valeurs possibles de a sont ±7 et les valeurs possibles de b sont ±1, d’après l’équation
2ab = 14 ⇔ ab = 7, on en déduit que ab > 0 et que donc a et b sont de même signe.
Si a = 7 alors b = 1 et δ = 7 + i et si a = −7 alors b = −1 et δ = −7 − i
Deuxième méthode
∆ = 48 + 14i = 49 + 2 × 7i − 1 = (7 + i)2 donc δ = 7 + i ou δ = −7 − i.

Troisième méthode

On reprend le système

{
a2 − b2 = 48

2ab = 14 ⇔
{

a2 −
( 7

a
)2

= 48
b = 7

a
⇔
{

a2 − 49
a2 = 48

b = 7
a

⇔
{

a4 − 49 = 48a2

b = 7
a

⇔{
a4 − 48a2 − 49 = 0

b = 7
a

⇔
{

A2 − 48A − 49 = 0
b = 7

a
, le discriminant de A2 − 48A − 49 = 0 est ∆′ = 482+

4 × 49 = 2500 = 502 donc ses solutions sont A1 = 48−50
2 = −1 et A2 = 48+50

2 = 49, A1 < 0 donc il n’y
a pas de solution de a2 = −1, par contre a2 = 49 admet deux solutions a = −7 et a = 7. Si a = −7 alors
b = 7

a = −1 et si a = 7 alors b = 7
a = 1, on retrouve les mêmes solutions.

Les solutions de (1 + i)z2 − (3 + i)z − 6 + 4i = 0 sont :

z1 =
(3 + i)− (7 + i)

2(1 + i)
= − 4

2(1 + i)
= − 2

1 + i
= −2(1 − i)

12 + 12 = −1 + i

z2 =
(3 + i) + (7 + i)

2(1 + i)
=

10 + 2i
2(1 + i)

=
5 + i
1 + i

=
(5 + i)(1 − i)

12 + 12 =
5 − 5i + i + 1

12 + 12 =
6 − 4i

2
= 3 − 2i
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15.
∆ = (−(9 + 3i))2 − 4(1 + 2i)(−5i + 10) =

(
3(3 + i)2

)
− 4(−5i + 10 + 10 + 20i)

= 9(9 − 1 + 6i)− 4(−25) = 9(8 + 6i)− 4(20 + 15i) = 72 + 54i − 80 − 60i
= −8 − 6i

On pose δ = a + ib, ∆ = δ2 ⇔ −8 − 6i = (a + ib)2 ⇔ −8 − 6i = a2 − b2 + 2iab ⇔
{

a2 − b2 = −8
2ab = −6

On rajoute l’équation |∆| =
∣∣δ2
∣∣ ⇔ | − 8 − 6i| = a2 + b2 ⇔ a2 + b2 =

√
(−8)2 + (−6)2 ⇔ a2+ b2 =√

64 + 36 ⇔ a2 + b2 =
√

100 = 10

Avec le système
{

a2 − b2 = −8
a2 + b2 = 10

, en faisant la somme des deux équations, on trouve 2a2 = 2 ⇔ a2 = 1 ,

d’où l’on tire b2 = 9. Les valeurs possibles de a sont ±1 et les valeurs possibles de b sont ±3, d’après l’équation
2ab = −6 ⇔ ab = −3, on en déduit que ab < 0 et que donc a et b sont de signe opposé.
Si a = 1 alors b = −3 et δ = 1 − 3i et si a = −1 alors b = 3 et δ = −1 + 3i
Deuxième méthode

On reprend le système

{
a2 − b2 = −8

2ab = −6 ⇔
{

a2 −
(−3

a
)2

= −8
b = −3

a
⇔
{

a2 − 9
a2 = −8

b = −3
a

⇔{
a4 − 9 = −8a2

b = −3
a

⇔
{

a4 + 8a2 − 9 = 0
b = −3

a
⇔
{

A2 + 8A − 9 = 0
b = −3

a
, le discriminant de A2 + 8A − 9 = 0

est
∆′ = 82 + 4 × 9 = 100 = 102 donc ses solutions sont A1 = −8−10

2 = −9 et A2 = −8+10
2 = 1, A2 < 0 donc il

n’y a pas de solution de a2 = −9, par contre a2 = 1 admet deux solutions a = −1 et a = 1.
Si a = −1 alors b = −3

a = 3 et si a = 1 alors b = −3
a = −1, on retrouve les mêmes solutions.

Troisième méthode
∆ = −8 − 6i = 1 − 6i − 9 = (1 − 3i)2 donc δ = 1 − 3i et δ = −1 + 3i
Les solutions de (1 + 2i)z2 − (9 + 3i)z − 5i + 10 = 0 sont :

z1 =
(9 + 3i)− (1 − 3i)

2(1 + 2i)
=

8 + 6i
2(1 + 2i)

=
4 + 3i
1 + 2i

=
(4 + 3i)(1 − 2i)

12 + 22 =
4 − 8i + 3i + 6

10
= 2 − i

z2 =
(9 + 3i) + (1 − 3i)

2(1 + 2i)
=

10
2(1 + 2i)

=
5

1 + 2i
=

5(1 − 2i)
12 + 22 = 1 − 2i

16. ∆ =
(
−(6i + 2)2)− 4(1 + 3i)(11i − 23) = (6i + 2)2 − 4(11i − 23 − 33 − 69i) = −36 + 24i+ 4 − 4(−56 −

58i) = −32 + 24i + 224 + 232i = 192 + 256i = 64(3 + 4i)
Si j’ai mis 64 en facteur, c’est que maintenant il suffit de trouver une racine deuxième de 3 + 4i, ce qui est
beaucoup plus facile que de trouver une racine deuxième de 192 + 256i.

On pose δ = a + ib, ∆ = δ2 ⇔ 3 + 4i = (a + ib)2 ⇔ 3 + 4i = a2 − b2 + 2iab ⇔
{

a2 − b2 = 3
2ab = 4

On rajoute l’équation |∆| =
∣∣δ2
∣∣⇔ |3 + 4i| = a2 + b2 ⇔ a2 + b2 =

√
32 + 42 ⇔ a2 + b2 =

√
25 = 5

Avec le système
{

a2 − b2 = 3
a2 + b2 = 5

, en faisant la somme des deux équations, on trouve 2a2 = 8 ⇔ a2 = 4, d’où

l’on tire b2 = 1. Les valeurs possibles de a sont ±2 et les valeurs possibles de b sont ±1, d’après l’équation
2ab = 4 ⇔ ab = 2, on en déduit que ab > 0 et que donc a et b sont de même signe.
Si a = 2 alors b = 1 et δ = 2 + i et si a = −2 alors b = −1 et δ = −2 − i
Donc (2 + i)2 = 3 + 4i entraine que ∆ = 64(3 + 4i) = 82(2 + i)2 = (8(2 + i))2 = (16 + 8i)2

Deuxième méthode
3 + 4i = 4 + 4i − 1 = (2 + i)2 et on retrouve le même résultat.
Troisième méthode
On reprend le système

{
a2 − b2 = 3

2ab = 4 ⇔
{

a2 − ( 2
a )

2 = 3
b = 2

a
⇔
{

a2 − 4
a2 = 3

b = 2
a

⇔
{

a4 − 4 = 3a2

b = 2
a

⇔
{

a4 − 3a2 − 4 = 0
b = 2

a

⇔
{

A2 − 3A − 4 = 0
b = 2

a

47 - 50



Les solutions de A2 − 3A − 4 = 0 sont A1 = −1 < 0 et A2 = 4, donc a2 = 4,
Si a = −2 alors b = 2

a = −1 et alors δ = −2 − i, si a = 2 alors b = 2
a = 1 et alors δ = 2 + i.

Les solutions de (1 + 3i)z2 − (6i + 2)z + 11i − 23 = 0 sont

z1 =
6i + 2 − (16 + 8i)

2(1 + 3i)
=

−14 − 2i
2(1 + 3i)

=
−7 − i
1 + 3i

=
(−7 − i)(1 − 3i)

12 + 32 =
−7 + 21i − i − 3

10
= −1 + 2i

z2 =
6i + 2 + (16 + 8i)

2(1 + 3i)
=

18 + 14i
2(1 + 3i)

=
9 + 7i
1 + 3i

=
(9 + 7i)(1 − 3i)

12 + 32 =
9 − 27i + 7i + 21

10
= 3 − 2i

Correction de l’exercice 17 N

∆ = (−i)2 + 4(1 + i) = 4 + 4i − 1 = (2 + i)2

Les solutions de Z2 − iZ − 1 − i = 0 sont

Z1 =
i + 2 + i

2
= 1 + i

Z2 =
i − (2 + i)

2
= −1

Les solutions de z6 − iz3 − 1 − i = 0 vérifient

z3 = 1 + i =
√

2ei π
4 ⇔

{
|z3| =

√
2

arg(z3) = π
4 + 2kπ, k ∈ Z

⇔
{

|z|3 = 2
1
2

3 arg(z) = π
4 + 2kπ, k ∈ Z

⇔
{

|z| = 2
1
6

arg(z) = π
12 + 2kπ

3 , k ∈ {0, 1, 2}
⇔ z ∈

{
2

1
6 ei π

12 ; 2
1
6 e

3iπ
4 ; 2

1
6 e

17iπ
12

}
Ou

z3 = −1 ⇔
{

|z3| = 1
arg(z3) = π + 2kπ, k ∈ Z

⇔
{

|z|3 = 1
3 arg(z) = π + 2kπ, k ∈ Z

⇔
{

|z| = 1
arg(z) = π

3 + 2kπ
3 , k ∈ {0, 1, 2}

Il y a donc trois solutions

z0 = e
iπ
3 ; z1 = e

3iπ
3 = eiπ = −1; z2 = e

5iπ
3 = e−

iπ
3

Finalement il y a six solutions {
2

1
6 ei π

12 ; 2
1
6 e

3iπ
4 ; 2

1
6 e

17iπ
12 ; e

iπ
3 ;−1; e−

iπ
3

}
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