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Résumé

Vous connaissez les intégrales de fonctions d’une variable (parfois appelée intrégrales simples). Le but de ce
chapitre est de définir une notion d’intégrale pour les fonctions de plusieurs variables. L’une des nouveautés est
la richesse des domaines sur lesquelles on peut intégrer. En effet, le domaine d’intégration d’une intégrale simple
est toujours un intervalle (ou une union d’intervalles). Par contre, on peut intégrer une fonction de deux variables
sur un rectangle, un disque, un domaine entouré par une courbe compliquée (on parle d’intégrales doubles).
On peut intégrer une fonction de trois variables sur une sphère, un cylindre, un cône, un ellipsoïde, etc. (on
parle d’intégrales triples). Des intégrales de fonctions de plusieurs variables interviennent dans toutes sortes de
problèmes en physique.
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4 Exercices 24

1 Intégrales doubles

1.1 Domaines d’intégration

Dans le cas des intégrales double les domaines d’intégration sont des sous-ensembles de R2. La première chose à
faire est donc de décrire ces domaine de R2 de façon judicieuse. De multiples possibilités s’offrent à nous. Nous
allons dans un premier temps nous intéresser à deux types spécifique de description, ou autrement dit de balayage
du domaine : le balayage vertical puis le balayage horizontal.

Définition 1 (Balayage vertical).

∆V =
{
(x, y) ∈ R2 | a ≤ x ≤ b, u(x) ≤ y ≤ v(x)

}
,

où u et v sont continues et derivables de [a, b] dans R.

Ici dans le balayage vertical l’abscisse varie entre deux valeurs fixes a et b, tant dis que l’ordonnée y varie entre deux
valeurs variables u(x) et v(x).

Définition 2 (Balayage horizontal).

∆H =
{
(x, y) ∈ R2 | c ≤ y ≤ d, s(y) ≤ x ≤ t(y)

}
,

où s et t sont continues et derivables de [c, d] dans R.

Ici dans le balayage horizontal l’ordonnée y varie entre deux valeurs fixes c et d, tandis que l’abscisse x varie entre
deux valeurs variables s(y) et t(y)
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1.2 Calculs d’une integrale double avec les deux types de balayage

Définition 3 (Balayage vertical).
Pour (x, y) ∈ ∆V , c’est à dire a ≤ x ≤ b et u(x) ≤ y ≤ v(x), on écrit∫∫

∆V

f =
∫∫

∆V

f (x, y) dxdy =
∫ b

a

(∫ v(x)

u(x)
f (x, y) dy

)
dx.

On sait que si f est continue, positive, et derivable sur [a, b], alors

A =
∫ b

a
f (x) dx

est l’aire de la region du plan

∆ =
{
(x, y) ∈ R2 | a ≤ x ≤ b, 0 ≤ y ≤ f (x)

}
.

Or on a

f (x) =
∫ f (x)

0
1 dy

donc l’aire considerée est egale a

A =
∫ b

a

(∫ f (x)

0
dy
)

dx =
∫∫

∆
dxdy.

On definie l’aire d’un d’un domaine ∆ de R2 par

A(∆) =
∫∫

∆
1.

Exemple 1.
Soit p > 0. On considere le domaine ∆ definie comme

∆ =
{
(x, y) ∈ R2

∣∣∣ 0 ≤ x ≤ p
2

, 0 ≤ y ≤
√

2px
}

,

Calculons l’aire de ce domaine par balayage vertical. On note A l’aire du domaine ∆.

A =
∫∫

∆
1 dxdy =

∫ p
2

0

(∫ √
2px

0
1 dy

)
dx =

∫ p
2

0

√
2px dx =

√
2p
[

2
3

x
3
2

] p
2

0
=
√

2p
(

2
3

( p
2

) 3
2 − 0

)
=

p2

3
.
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Définition 4 (Balayage horizontal).
Pour (x, y) ∈ ∆H, c’est à dire c ≤ y ≤ d et s(y) ≤ x ≤ t(y), on écrit∫∫

∆H

f =
∫∫

∆H

f (x, y) dxdy =
∫ d

c

(∫ t(y)

s(y)
f (x, y) dy

)
dx.

Exemple 2.
Soit p > 0. On recalcule l’aire du domaine ∆ de l’exemple précedent avec cette fois un balayage horizontal. On note
de nouveau A l’aire du domaine ∆.

∆ =

{
(x, y) ∈ R2

∣∣∣∣ 0 ≤ y ≤ p,
y2

2p
≤ x ≤ p

2

}
.

On a alors

A =
∫∫

∆
1 dxdy =

∫ p

0

(∫ p
2

y2
2p

dx

)
dy =

∫ p

0

(
p
2
− y2

2p

)
dy =

[
p
2

y − y3

6p

]p

0
=

p2

2
− p2

6
=

p2

3

1.3 Théoremes de Fubini
Formalisons ce que nous venons de voir.

Théorème 1 (Fubini, 1er cas).
Soit f : R2 → R une fonction continue definie sur ∆ = [a, b]× [c, d]. On alors∫∫

∆
f (x, y) dx dy =

∫ b

a

(∫ d

c
f (x, y) dy

)
dx =

∫ d

c

(∫ b

a
f (x, y) dx

)
dy.

Si f peut s’ecrire comme le produit de deux fonctions tels que

f (x, y) = g(x)× h(y),
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alors ∫∫
∆

f (x, y) dx dy =
∫∫

[a,b]×[c,d]
g(x) h(y) dx dy =

∫ b

a
g(x) dx ×

∫ d

c
h(y) dy.

Exemple 3.
Soit f (x, y) = x cos(y), avec

∆ = [0, 1]×
[
0,

π

2

]
.

On a alors∫∫
∆

f (x, y) dx dy =
∫∫

[0,1]×[0,π/2]
x cos(y) dx dy =

∫ 1

0
x dx ×

∫ π/2

0
cos(y) dy =

[
1
2

x2
]1

0
× [sin(y)]

π
2
0 =

1
2

.

Exemple 4.
Soit f (x, y) = x2y − 1, avec

∆ = [−1, 1]× [0, 1].

On a alors ∫∫
∆

f (x, y) dx dy =
∫∫

[−1,1]×[0,1]
(x2y − 1) dx dy

=
∫ 1

−1

(∫ 1

0
(x2y − 1) dy

)
dx

=
∫ 1

−1

([
1
2

x2y2 − y
]y=1

y=0

)
dx

=
∫ 1

−1

(
1
2

x2 − 1
)

dx

=

[
1
6

x3 − x
]1

−1∫∫
∆

f (x, y) dx dy = −5
3

Théorème 2 (Fubini, 2ème cas).
Soit une fonction f de R2 dans R, continue et definie sur un ensemble borné ∆ quelconque.

• Pour tout (x, y) ∈ ∆, il existe des valeurs a, b ∈ R tels que a ≤ x ≤ b

• Pour tout x ∈ [a, b], il existe c(x) et d(x) tels que c(x) ≤ y ≤ d(x),

de telle sorte que
∆ =

{
(x, y) ∈ R2 | x ∈ [a, b], y ∈ [c(x), d(x)]

}
.

On peut egalement decrire ∆ de la facon suivante.

• Pour tout (x, y) ∈ ∆, il existe des valeurs c, d ∈ R tels que c ≤ y ≤ d

• Pour tout y ∈ [c, d], il existe a(y) et b(y) tels que a(y) ≤ x ≤ b(y)

de telle sorte que
∆ =

{
(x, y) ∈ R2 | y ∈ [c, d], x ∈ [a(y), b(y)]

}
.

On a alors ∫∫
∆

f (x, y) dx dy =
∫ b

a

(∫ d(x)

c(x)
f (x, y) dy

)
dx =

∫ d

c

(∫ b(y)

a(y)
f (x, y) dx

)
dy.
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Exemple 5.
Soient f (x, y) = x2y, et ∆ la partie du plan xOy délimitée par l’arc de parabole y = x2, et la droite y = 1.

On peut alors écrire
∆ =

{
(x, y) ∈ R2 | x ∈ [−1, 1], y ∈ [x2, 1]

}
.

Par conséquent, on a : ∫∫
∆

f (x, y) dx dy =
∫∫

∆
x2y dx dy

=
∫ 1

−1
x2 dx

∫ 1

x2
y dy

=
∫ 1

−1
x2
[

1
2

y2
]1

x2
dx

=
∫ 1

−1

1
2
(x2 − x4) dx

=
1
2

[
1
3

x3 − 1
5

x5
]x=1

x=−1∫∫
∆

f (x, y) dx dy =
2
15

.

1.4 Proprietés
Pour calculer les intégrales doubles, on utilise les proprietés suivantes.

Proposition 1.
1) Pour tout λ, µ ∈ R on a∫∫

D
(λ f (x, y) + µ g(x, y)) dx dy = λ

∫∫
D

f (x, y) dx dy + µ
∫∫

D
g(x, y) dx dy.

2) Si D = D1 ∪ D2 et D1 ∩ D2 = ∅ ou courbe, alors∫∫
D

f (x, y) dx dy =
∫∫

D1

f (x, y) dx dy +
∫∫

D2

f (x, y) dx dy.

3) Si f (x, y) ≤ g(x, y) pour tout (x, y) ∈ D, alors∫∫
D

f (x, y) dx dy ≤
∫∫

D
g(x, y) dx dy.

4) Nous avons l’inegalite suivante ∣∣∣∣∫∫D
f (x, y) dx dy

∣∣∣∣ ≤ ∫∫
D
| f (x, y)| dx dy.
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5) Si D est symetrique par rapport à l’axe des abscisses, c’est a dire pour tout (x, y) ∈ D f (x,−y) = f (x, y),
alors em posant

∆1 = {(x, y) ∈ ∆, y ≥ 0}

on a ∫∫
∆

f = 2
∫∫

∆1

f .

1.5 Changement de variables

Théorème 3 (Changement de variables).
Considerons l’intégrale ∫∫

D
f (x, y) dx dy

et un changement de variables
(x, y) =

(
a(u, v), b(u, v)

)
.

Pour exprimer l’integrale en termes de la fonction

g(u, v) = f
(
a(u, v), b(u, v)

)
, il faut exprimer D et le produit dx dy en termes de (u, v).

• Le domaine D se transforme en le domaine

∆ =
{
(u, v) ∈ R2 | (x, y) = (a(u, v), b(u, v)) ∈ D

}
.

• Les elements dx et dy se transforment comme

dxdy = |det (J(u, v))| dudv

où det (J(u, v)) est le déterminant de la matrice Jacobienne

J(u, v) =


∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

 .

Donc on a ∫∫
D

f (x, y) dx dy =
∫∫

∆
g(u, v) |det (J(u, v))| du dv.

Exemple 6.
On considere le domaine ∆ definie comme

∆ =

{
(x, y) ∈ R2,

x2

a2 +
y2

b2 ≤ 1
}

avec (a, b) ∈ R∗
+ × R∗

+.
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On pose u =
x
a

et v =
y
b
, donc x = au et y = bv. On a alors

|det (J(u, v))| =
∣∣∣∣ dx
du

dy
dv

− dx
dv

dy
du

∣∣∣∣ = |a × b − 0 × 0| = |a × b| = ab

car a et b sont positifs. De plus ∆ se transforme en le domaine D definie comme suit

D =
{
(u, v) ∈ R2, u2 + v2 ≤ 1

}
.

On se retrouve a calculer l’aire du disque centre en l’origine et de rayon 1. On alors d’apres le theoreme precedent∫∫
∆

dx dy =
∫∫

D
J(u, v) du dv = ab

∫∫
D

du dv = πab

Exemple 7.
Considerons l’integrale

I =
∫∫

∆
x2 dx dy

avec
∆ =

{
(x, y) ∈ R2, x2 + y2 ≤ 1

}
.

On a une symetrie par rapport au axes des abscisses et ordonnées.∫∫
∆

x2 dx dy = 2
∫ 1

−1

(∫ √
1−x2

0
x2dy

)
dx

= 4
∫ 1

0
x2
√

1 − x2 dx
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On effectue le changement de variable x = cos(t). On a alors dx = − sin(t) dt.

■ pour x = 0 on a t =
π

2
.

■ pour x = 1 on a t = 0.

Donc

I = 4
∫ π

2

0
cos2(t)

√
1 − cos2(t) sin(t) dt

= 4
∫ π

2

0
cos2(t) sin2(t) dt

=
∫ π

2

0
sin2(2t) dt

I =
π

4

Cas des coordonnées polaires

Considerons l’integrale ∫∫
D

f (x, y) dx dy

et lw changement de variables en coordonnées polaires

(x, y) =
(
r cos(θ), r sin(θ)

)
.

Pour exprimer l’integrale en termes de la fonction g(r, θ) = f
(
r cos(θ), r sin(θ)

)
, il faut exprimer D et le produit

dx dy en termes de (r, θ).

■ Le domaine D se transforme en le domaine

∆ =
{
(r, θ) ∈ R2 | (x, y) =

(
r cos(θ), r sin(θ)

)
∈ D

}
.

■ Les elements dx et dy se transforment comme

dx dy = r dr dθ.

Exemple 8.
Calculons

I =
∫∫

D
(x2 + y2) dx dy

avec
D =

{
(x, y) ∈ R2 , x2 + y2 − x ≤ 0 , x2 + y2 − y ≥ 0 , y ≥ 0

}
.
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On effectue un changement de variable en coordonnées polaires donc

x = r cos(θ) y = r sin(θ) et dx dy = r dr dθ.

Le domaine D devient

x2 + y2 − x ≤ 0 ⇔ r2 − r cos(θ) ≤ 0 ⇔ r − cos(θ) ≤ 0

x2 + y2 − y ≥ 0 ⇔ r2 − r sin(θ) ≥ 0 ⇔ r − sin(θ) ≥ 0
y ≥ 0 ⇔ r sin(θ) ≥ 0

Avec les deux premieres inegalite nous pouvons ecrire

sin(θ)− cos(θ) ≤ 0 ⇔ sin(θ) ≤ cos(θ).

On a alors
sin(θ) ≤ r ≤ cos(θ) et 0 ≤ θ ≤ π

4
Donc

I =
∫∫

D
(x2 + y2) dx dy

=
∫ π

4

0

(∫ cos(θ)

sin(θ)
r2 r dr

)
dθ

=
∫ π

4

0

(∫ cos(θ)

sin(θ)
r3 dr

)
dθ

=
1
4

∫ π
4

0

(
cos4(θ)− sin4(θ)

)
dθ

=
1
4

∫ π
4

0
cos(2θ) dθ

I =
1
8

1.6 Application au calcul du volume d’une boule

Volume de la boule en coordonnées cartesiennes
Le volume de la boule B =

{
(x, y, z) ∈ R3 | x2 + y2 + z2 ≤ 1

}

est deux fois le volume de la demi boule

B+ =
{
(x, y, z) ∈ R3 | x2 + y2 + z2 ≤ 1, y ≥ 0

}
,

comprise entre le plan xOy et le graphe de la fonction z =
√

1 − x2 − y2. On a alors

Vol(B) = 2
∫∫

D

√
1 − x2 − y2 dx dy, où D =

{
(x, y) ∈ R2 | x2 + y2 ≤ 1

}
.
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On peut décrire D comme l’ensemble

D =
{
(x, y) ∈ R2 | x ∈ [−1, 1], y ∈

[
−
√

1 − x2,
√

1 − x2
] }

,

donc on a

Vol(B) = 2
∫ 1

−1
dx

∫ √
1−x2

−
√

1−x2

√
1 − x2 − y2 dy

= 2
∫ 1

−1
dx

∫ √
1−x2

−
√

1−x2

√
1 − x2

√
1 − y2

1 − x2 dy.

Avec le changement de variable
y√

1 − x2
= sin t, on a

−
√

1 − x2 ≤ y ≤
√

1 − x2 =⇒ −1 ≤ sin t ≤ 1 =⇒ −π

2
≤ t ≤ π

2
,

et
y2

1 − x2 = sin2 t =⇒

√
1 − y2

1 − x2 =
√

1 − sin2 t =
√

cos2 t = | cos t| = cos t

pour t ∈ [−π
2 , π

2 ]. On a egalement

y =
√

1 − x2 sin t =⇒ dy =
√

1 − x2 cos t dt.

En sachant que 2
∫ π/2

−π/2
cos2 t dt = π, on a alors

Vol(B) = 2
∫ 1

−1
(1 − x2) dx

∫ π/2

−π/2
cos2 t dt

= π
∫ 1

−1
(1 − x2) dx

= π

[
x − 1

3
x3
]1

−1

Vol(B) =
4π

3
.

Volume de la boule en coordonnées polaires.
Pour B =

{
(x, y, z) ∈ R3 | x2 + y2 + z2 ≤ 1

}
, calculons

Vol(B) = 2
∫∫

D

√
1 − x2 − y2 dx dy, où D =

{
(x, y) ∈ R2 | x2 + y2 ≤ 1

}
.

avec le changement de variables en coordonnées polaires,

(x, y) = (ρ cos φ, ρ sin φ).
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Puisque
x2 + y2 = ρ2

on a √
1 − x2 − y2 =

√
1 − ρ2

et
(ρ, φ) ∈ [0, 1]× [0, 2π[.

En sachant que
dx dy = ρ dρ dφ

et en utilisant le theoreme de Fubini pour separer les variables, on a

Vol(B) = 2
∫∫

[0,1]×[0,2π[

√
1 − ρ2 ρ dρ dφ = 2

∫ 1

0

√
1 − ρ2 ρ dρ

∫ 2π

0
dφ.

L’intégrale en φ est simple ∫ 2π

0
dφ =

[
φ
]2π

0 = 2π.

Pour l’autre, si on pose t = 1 − ρ2 on a

ρ = 0 =⇒ t = 1 et ρ = 1 =⇒ t = 0,√
1 − ρ2 =

√
t = t1/2,

dt = −2ρ dρ =⇒ ρ dρ = −1
2

dt,

et on obtient enfin

Vol(B) = −2
2

2π
∫ 0

1
t1/2 dt

= 2π
∫ 1

0
t1/2 dt

= 2π

[
1

1
2 + 1

t
1
2+1

]1

0

= 2π
2
3

[
t

3
2

]1

0

Vol(B) =
4π

3
.

2 Intégrales triples

2.1 Calculs d’une integrale triple sur un compact elementaire

Sommation par pile

On appelle compact de R3 toute partie fermee et bornee de R3. On appelle compact elementaire de R3 toute partie
∆ de R3 pouvant etre definie par :

Définition 5 (Sommation par pile).
Pour (x, y, z) ∈ ∆1, avec ce domaine defnie comme

∆1 =
{
(x, y, z) ∈ R3 | (x, y) ∈ D et u(x, y) ≤ z ≤ v(x, y)

}
on a ∫∫∫

∆1

f =
∫ ∫

∆1

f (x, y, z) dxdydz =
∫∫

D

(∫ v(x,y)

u(x,y)
f (x, y, z) dz

)
dxdy.

12 - 43



Cas particulier.

Soit f une fonction positive et continue sur D. L’integrale

∫∫
D

f (x, y)dxdy

est le volume de

∆1 =
{
(x, y, z) ∈ R3 | (x, y) ∈ D et u(x, y) ≤ z ≤ v(x, y)

}
or

f (x, y) =
∫ f (x,y)

0
1 dz

donc le volume de ∆1 est ∫∫∫
∆1

1 dxdydz.

Sommation par tranche

On appelle compact de R3 toute partie fermee et bornee de R3. On appelle compact elementaire de R3 toute partie
∆ de R3 pouvant etre definie par :

Définition 6 (Sommation par tranche).
(x, y, z) ∈ ∆1, avec ce domaine defnie comme

∆2 =
{
(x, y, z) ∈ R3 | a ≤ z ≤ b, (x, y) ∈ Dz

}
,

on a ∫∫∫
∆2

f =
∫ b

a

(∫∫
Dz

f (x, y, z) dxdy
)

dz.

2.2 Theoreme de Fubini

Théorème 4 (Theoreme de Fubini (1)).
Si

Ω = [a, b]× [c, d]× [e, g]

est un parallélepipède, alors∫∫∫
Ω

f (x, y, z) dx dy dz =
∫ b

a
dx
∫ d

c
dy
∫ g

e
dz f (x, y, z)

dans l’ordre qu’on veut.

Exemple 9.
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∫∫∫
[0,1]×[1,2]×[2,3]

(x2 − 2yz) dx dy dz =
∫ 3

2
dz

∫ 2

1
dy
∫ 1

0
dx (x2 − 2yz)

=
∫ 3

2
dz

∫ 2

1
dy
[ 1

3
x3 − 2xyz

]x=1

x=0

=
∫ 3

2
dz

∫ 2

1
dy
( 1

3
− 2yz

)
=
∫ 3

2

[ 1
3

y − y2z
]y=2

y=1
dz

=
∫ 3

2

( 2
3
− 4z − 1

3
+ z

)
dz

=
∫ 3

2

( 1
3
− 3z

)
dz

=
[ 1

3
z − 3

2
z2
]3

2

=
3
3
− 27

2
− 2

3
+

12
2

=
1
3
− 15

2

= −43
6

Théorème 5 (Theoreme de Fubini (2)).
Si

Ω =
{
(x, y, z) ∈ R3 ∣∣ x ∈ [a, b], y ∈ [c(x), d(x)], z ∈ [e(x, y), g(x, y)]

}
est un ensemble borné quelconque, alors∫∫∫

Ω
f (x, y, z) dx dy dz =

∫ b

a
dx
∫ d(x)

c(x)
dy
∫ g(x,y)

e(x,y)
dz f (x, y, z)

(ordre forcé).

Exemple 10.
Si Ω est le cylindre plein, de base le disque

D =
{
(x, y, z) ∈ R3 | x2 + y2 ≤ 1, z = 0

}

et de hauteur 3, on peut écrire

Ω =
{
(x, y, z) ∈ R3 | x2 + y2 ≤ 1, 0 ≤ z ≤ 3

}
=
{
(x, y, z) ∈ R3 | x ∈ [−1, 1], y ∈

[
−
√

1 − x2,
√

1 − x2
]
, z ∈ [0, 3]

}
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et donc ∫∫∫
Ω
(1 − 2yz) dx dy dz =

∫ 3

0
dz
∫∫

D
(1 − 2yz) dx dy

=
∫ 3

0
dz
∫ 1

−1
dx

∫ √
1−x2

−
√

1−x2
(1 − 2yz) dy

=
∫ 3

0
dz
∫ 1

−1

[
y − y2z

]y=
√

1−x2

y=−
√

1−x2
dx

=
∫ 3

0
dz
∫ 1

−1

(√
1 − x2 − (1 − x2)z +

√
1 − x2 + (1 − x2)z

)
dx

=
∫ 3

0
dz
∫ 1

−1
2
√

1 − x2 dx

= 3
∫ π/2

−π/2
2 cos2 t dt

= 3π

2.3 Changement de variables
Considerons l’intégrale ∫∫∫

D
f (x, y, z) dx dy dz

et un changement de variables
(x, y, z) =

(
a(u, v, w), b(u, v, w), c(u, v, w)

)
.

Pour exprimer l’integrale en termes de la fonction

g(u, v, w) = f
(
a(u, v, w), b(u, v, w), c(u, v, w)

)
, il faut exprimer D et le produit dx dy dz en termes de (u, v, w).

• Le domaine D se transforme en le domaine

∆ =
{
(u, v, w) ∈ R2 | (x, y, z) = (a(u, v, w), b(u, v, w), c(u, v, w)) ∈ D

}
.

• Les elements dx, dy et dz se transforment comme

dxdydz = |det (J(u, v, w))| dudvdw

où det (J(u, v, w)) est le déterminant de la matrice Jacobienne

J(u, v, w) =



∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

 .

On arrive finalement au théorème suivant.

Théorème 6 (Changement de variables).∫∫∫
D

f (x, y, z) dx dy dz =
∫∫∫

∆
g(u, v, w) |det (J(u, v, w))| du dv dw.
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Théorème 7 (Changement de variables en coordonnées cylindriques).
Si  x = r cos θ

y = r sin θ
z = z

alors dx dy dz devient r dr dθ dz

Exemple 11.
Calculons

I =
∫∫

D

∫
f (x, y, z)dxdydz

où
D =

{
(x, y, z) | 0 ≤ z ≤ 1, x2 + y2 ≤ z2

}
et

f (x, y, z) = |xyz|

Le domaine D est invariant par rotation d’axe Oz. On utilise les coordonnées cylindriques.

x = r cos t, y = r sin t, z

Le dessin suivant représente l’intersection de D avec le plan rOz.

Le cône d’équation cartésienne
x2 + y2 = z2

a pour équation cylindrique r = z. On intègre donc sur le domaine

∆ = {(r, t, z) | 0 ≤ r ≤ z ≤ 1,−π ≤ t ≤ π}

et

f (r cos t, r sin t, z) = r2 | cos t sin t|z =
r2

2
| sin 2t|z.

Donc

I =
∫∫∫

∆
f (r cos t, r sin t, z)rdrdtdz =

∫∫∫
∆

r3

2
| sin 2t|zdrdtdz.

Lorsque (z, t) est fixé dans ∆1 = [0, 1]× [−π, π], la variable r est comprise entre 0 et z. On calcule tout d’abord

Ir(z, t) =
∫ z

0

r3

2
| sin 2t|zdr =

[
r4

8
| sin 2t|z

]r=z

r=0
=

z5

8
| sin 2t|.

Alors
I =

∫∫
∆1

Ir(z, t)dzdt.
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Comme les variables se séparent, on a immédiatement

I =
(∫ π

−π
| sin 2t|dt

)(∫ 1

0

z5

8
, dz
)

Comme la fonction qui à t associe | sin 2t| est de période π/2∫ π

−π
| sin 2t|dt = 4

∫ π/2

0
sin 2tdt = [−2 cos 2t]π/2

0 = 4

Par ailleurs, ∫ 1

0
z5dz =

1
6

d’où
I =

1
12

Théorème 8 (Changement de variables en coordonnées spheriques).
Si  x = r sin φ cos θ

y = r sin φ sin θ
z = r cos φ

dx dy dz devient r2 sin φ dr dθ dφ

Exemple 12.
Calculons

I =
∫∫∫

D
f (x, y, z)dxdydz

où D est le domaine intérieur à la sphère de centre O et de rayon 1 , et extérieur au cône de révolution d’axe Oz et
de demi-angle au sommet π/3, et

f (x, y, z) =
x2 + y2

x2 + y2 + z2 .

On utilise les coordonnées sphériques

x = ρ sin φ cos θ, y = ρ sin φ sin θ, z = ρ cos φ

Le dessin suivant représente une coupe suivant (Oz) de D
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On intègre sur le domaine

∆ =]0, 1]× [0, 2π]×
[

π

3
,

2π

3

]
et

f (ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ) = sin2 φ

Alors

I =
∫∫∫

∆
f (ρ cos θ cos φ, ρ sin θ cos φ, ρ sin φ)ρ2 sin φdρdθdφ =

∫∫∫
∆

ρ2 sin3 φdρdθdφ

Comme les variables se séprent, on a immédiatement

I =
(∫ 1

0
ρ2dρ

)(∫ 2π

0
dθ

)(∫ 2π
3

π
3

sin3 φ dφ

)

=
2π

3

[
1

12
cos (3φ)− 3

4
cos (φ)

] 2π
3

π
3

=
2π

3

(
2
12

+
3
4

)
I =

11π

18

3 Applications

Si D est un domaine borné de R2, l’intégrale ∫∫
D

dx dy

represente le volume de la portion d’espace comprise entre le graphe de la fonction constante f (x, y) = 1 et le plan
xOy. Ce solide est un cylindre de hauteur 1 et de base D, son volume est donc égal à l’aire de D multipliée par la
hauteur, qui vaut 1.

Proposition 2 (Aire).
Soit D un domaine borné de R2.

• En général, on a

Aire(D) =
∫∫

D
dx dy.

• Si D est la portion du plan comprise entre l’axe Ox et le graphe d’une fonction positive

f : [a, b] −→ R,

c’est-à-dire si
D =

{
(x, y) ∈ R2 | x ∈ [a, b], y ∈ [0, f (x)]

}
,

alors on a :

Aire(D) =
∫ b

a
f (x) dx.

En effet, si
D =

{
(x, y) | x ∈ [a, b], y ∈ [0, f (x)]

}
,

on a

Aire(D) =
∫∫

D
dx dy =

∫ b

a

∫ f (x)

0
dy dx =

∫ b

a

([
y
] f (x)

0

)
dx =

∫ b

a
f (x) dx.
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Exemple 13.
Calculons l’aire du domaine D de R2 délimité par les courbes d’équation

y = x2 + 2x + 1 et y = x3 + 1.

D’abord on dessine le domaine D : la courbe y = x3 + 1 n’est rien d’autre que y = x3 translaté vers le haut de 1,
et la courbe y = x2 + 2x + 1 = (x + 1)2 est une parabole orientée vers le haut et centrée au point x + 1 = 0 et
y = 0, c’est-à-dire au point (−1, 0). Les deux courbes se rencontrent aux points (−1, 0) et (0, 1).

On a donc
D =

{
(x, y) ∈ R2 | − 1 ≤ x ≤ 0, x2 + 2x + 1 ≤ y ≤ x3 + 1

}
.

Donc

Aire(D) =
∫∫

D
dx dy =

∫ 0

−1

∫ x3+1

x2+2x+1
dy dx =

∫ 0

−1

([
y
]x3+1

x2+2x+1

)
dx

=
∫ 0

−1

(
x3 + 1 − x2 − 2x − 1

)
dx =

∫ 0

−1

(
x3 − x2 − 2x

)
dx

=

[
1
4

x4 − 1
3

x3 − x2
]0

−1

= 0 − 1
4
(−1)4 +

1
3
(−1)3 + (−1)2

Aire(D) =
5

12
.

Exemple 14.
Calculons l’intégrale ∫∫

D
(x2 − 2y) dx dy,

où D est le domaine de l’exercice précédent.∫∫
D
(x2 − 2y) dx dy =

∫ 0

−1

∫ x3+1

x2+2x+1
(x2 − 2y) dy dx

=
∫ 0

−1

[
x2y − y2

]x3+1

x2+2x+1
dx

=
∫ 0

−1

(
x2(x3 + 1)− (x3 + 1)2 − x2(x2 + 2x + 1) + (x2 + 2x + 1)2

)
dx

=
∫ 0

−1

(
− x6 + x5 + 6x2 + 4x

)
dx

=
[
− 1

7
x7 +

1
6

x6 + 2x3 + 2x2
]0

−1∫∫
D
(x2 − 2y) dx dy =

13
42
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Proposition 3 (Volume).
Soit Ω un domaine borné de R3.

• En général, on a

• Si Ω est la portion d’espace comprise entre le plan xOy et le graphe d’une fonction positive

f : D ⊂ R2 −→ R,

c’est-à-dire si
Ω =

{
(x, y, z) | (x, y) ∈ D ⊂ R2, z ∈ [0, f (x, y)]

}
,

alors on a
Vol(Ω) =

∫∫
D

f (x, y) dx dy

En effet, si
Ω =

{
(x, y, z) | (x, y) ∈ D ⊂ R2, z ∈ [0, f (x, y)]

}
,

on a

Vol(Ω) =
∫∫∫

Ω
dx dy dz

=
∫∫

D

(∫ f (x,y)

0
dz
)

dx dy

=
∫∫

D

([
z
] f (x,y)

0

)
dx dy

Vol(Ω) =
∫∫

D
f (x, y) dx dy.

Exemple 15 (Volume de la boule en coordonnées sphériques).
En coordonnées sphériques, la boule

B =
{
(x, y, z) ∈ R3 | x2 + y2 + z2 ≤ 1

}
devient

B′ =
{
(r, φ, θ) | r ∈ [0, 1], φ ∈ [0, 2π[, θ ∈ [0, π]

}
,

et, puisque
dx dy dz = r2 sin θ dr dφ dθ,

on a

Vol(B) =
∫∫∫

B
dx dy dz

=
∫∫∫

[0,1]×[0,2π[×[0,π]
r2 sin θ dr dφ dθ

=
∫ 1

0
r2 dr

∫ 2π

0
dφ

∫ π

0
sin θ dθ

=
1
3

2π
[
− cos θ

]π

0

Vol(B) =
4π

3
.

Proposition 4 (Quantités totale et moyenne).
Si f ≥ 0 denote la concentration d’une matière (densité volumique) dans un volume Ω ⊂ R3, ou la densité d’un
courant ou d’une énergie, alors

la quantité totale de matière / courant présente en Ω est egale à∫∫∫
Ω

f (x, y, z)dx dy dz.
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la quantité moyenne de matière / courant présente en Ω est egale à

1
Vol(Ω)

∫∫∫
Ω

f (x, y, z)dx dy dz.

Exemple 16.
Un matériau est distribué dans le cube Ω = [0, R]3 selon la densité volumique

f (x, y, z) =
x + y

(z + 1)2 .

La quantité totale du matériau est alors∫∫∫
Ω

f (x, y, z) dx dy dz =
∫ R

0

(∫ R

0
(x + y)

(∫ R

0

1
(z + 1)2 dz

)
dy
)

dx

=
∫ R

0

(∫ R

0
(x + y)

([
− 1

z + 1

]R

0

)
dy
)

dx

=
∫ R

0

(∫ R

0
(x + y)

(
−1

R + 1
+ 1
)

dy
)

dx

=
R

R + 1

∫ R

0

([
xy +

1
2

y2
]R

0

)
dx =

R
R + 1

∫ R

0

(
Rx +

1
2

R2
)

dx

=
R

R + 1

[
1
2

Rx2 +
1
2

R2x
]R

0
=

R
R + 1

( 1
2

R3 +
1
2

R3
)

∫∫∫
Ω

f (x, y, z) dx dy dz =
R4

R + 1
.

et puisque Vol(Ω) = R3, le volume moyen du matériau dans le cube est

1
Vol(Ω)

∫∫∫
Ω

f (x, y, z) dx dy dz =
1

R3
R4

R + 1
=

R
R + 1

.

Proposition 5 (Centre de masse).
Si µ ≥ 0 denote la densité de masse, et r(x, y, z) denote la distance d’un point (x, y, z) depuis un point fixe P
ou une droite fixe ∆, alors

La masse totale : présente en Ω est

M =
∫∫∫

Ω
µ(x, y, z) dx dy dz.

Le centre de masse : (ou centre d’inértie, ou encore baricentre) est le point G de coordonnées (xG, yG, zG) telles
que

xG =
1
M

∫∫∫
Ω

x µ(x, y, z) dx dy dz

yG =
1
M

∫∫∫
Ω

y µ(x, y, z) dx dy dz

zG =
1
M

∫∫∫
Ω

z µ(x, y, z) dx dy dz

Le moment d’inértie par rapport à P ou à ∆ est

1
M

∫∫∫
Ω

r2(x, y, z) µ(x, y, z) dx dy dz.

Un matériau est homogène si sa densité de masse est constante. Si cette constante n’est pas spécifiée, on peut
supposer que µ(x, y, z) = 1 pour tout (x, y, z).
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Exemple 17.
Trouvons le centre de masse du demi-cylindre homogène

Ω =
{
(x, y, z) ∈ R3 | x2 + y2 ≤ R2, z ∈ [0, H], y ≥ 0

}
.

Il convient de travailler en coordonnées cylindriques

Ω′ =
{
(ρ, φ, z) | ρ ∈ [0, R], φ ∈ [0, π], z ∈ [0, H]

}
.

La masse totale est alors

M =
∫∫∫

Ω
dx dy dz =

∫∫∫
Ω′

ρ dρ dφ dz =
∫ R

0
ρ dρ

∫ π

0
dφ

∫ H

0
dz =

π R2H
2

.

Puisque ∫ π

0
cos φ dφ =

[
sin φ

]π

0
= 0,

et ∫ π

0
sin φ dφ =

[
− cos φ

]π

0
= 2,

le centre de masse G a coordonnées cartesiennes

xG =
1
M

∫∫∫
Ω

x dx dy dz =
1
M

∫∫∫
Ω′

ρ cos φ ρ dρ dφ dz

=
1
M

∫ R

0
ρ2 dρ

∫ π

0
cos φ dφ

∫ H

0
dz = 0

yG =
1
M

∫∫∫
Ω

y dx dy dz =
1
M

∫ R

0
ρ2 dρ

∫ π

0
sin φ dφ

∫ H

0
dz =

2
π R2H

R3

3
2 H =

4R
3π

zG =
1
M

∫∫∫
D

z dx dy dz =
1
M

∫ R

0
ρ dρ

∫ π

0
dφ

∫ H

0
z dz =

2
π R2H

R2

2
π

H2

2
=

H
2

donc

G =
(

0,
4R
3π

,
H
2

)
.

Exemple 18.
Un sac de farine tombe par terre et la farine s’éparpille au sol avec une concentration non homogène

f (x, y) =
1(√

x2 + y2 + 1
)2

pour tout (x, y) ∈ R2. Calculons les quantités totale et moyenne de farine éparpillée dans le disque de rayon R > 0

autour du sac. La fonction f se simplifie en coordonnées polaires, car on a

f (ρ, φ) =
1

(ρ + 1)2

et le disque en coordonnées polaires est

DR =
{
(ρ, φ) | ρ ∈ [0, R], φ ∈ [0, 2π[

}
.
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On a alors

Quantité totale =
∫∫

DR

1
(ρ + 1)2 ρ dρ dφ

=
∫ 2π

0
dφ

∫ R

0

(
ρ + 1

(ρ + 1)2 − 1
(ρ + 1)2

)
dρ

= 2π
∫ R

0

(
1

ρ + 1
− 1

(ρ + 1)2

)
dρ

= 2π

[
ln(ρ + 1) +

1
ρ + 1

]R

0

= 2π
(

ln(R + 1) +
1

R + 1
− ln(1)− 1

)
Quantité totale = 2π

(
ln(R + 1)− R

R + 1

)

Aire(DR) =
∫∫

DR

ρ dρ dφ =
∫ R

0
ρ dρ

∫ 2π

0
dφ =

R2

2
2π = πR2

Quantité moyenne =
1

Aire(DR)

∫∫
DR

1
(ρ + 1)2 ρ dρ dφ

=
1

πR2 2π
(

ln(R + 1)− R
R + 1

)
Quantité moyenne =

2
R2

(
ln(R + 1)− R

R + 1

)
Exemple 19.
Calculons le centre de masse du solide Ω composé de la demi-boule B et du cylindre C suivants

B =
{
(r, φ, θ)

∣∣ r ∈ [0, R], φ ∈ [0, 2π], θ ∈ [π/2, π]
}

C =
{
(ρ, φ, z)

∣∣ ρ ∈ [0, R], φ ∈ [0, 2π], z ∈ [0, R]
}

,

ayant densité de masse µ(x, y, z) = z2. La masse totale de Ω est

MΩ = MB + MC

avec µ(x, y, z) = r2 cos2 θ sur B. On a donc

MB =
∫∫∫

B
r2 cos2 θ r2 sin θ dr dφ dθ =

∫ R

0
r4 dr

∫ 2π

0
dφ

∫ π

π/2
cos2 θ sin θ dθ

=
R5

5
2π
[
− 1

3
cos3 θ

]π

π/2
=

2πR5

15

MC =
∫∫∫

CR

z2 ρ dρ dφ dz =
∫ R

0
ρ dρ

∫ 2π

0
dφ

∫ R

0
z2 dz =

R2

2
2π

R3

3
=

πR5

3

MΩ = MB + MC =

(
2

15
+

1
3

)
πR5 =

7πR5

15
.

Puisque ∫ 2π

0
cos φ dφ = 0 et

∫ 2π

0
sin φ dφ = 0,
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les coordonnées cartesiennes du baricentre G de Ω sont

xG =
1

MΩ

∫∫∫
Ω

x µ(x, y, z) dx dy dz

=
1

MΩ

∫ R

0
r5 dr

∫ 2π

0
cos φ dφ

∫ π

π/2
cos2 θ sin2 θ dθ

+
1

MΩ

∫ R

0
ρ2 dρ

∫ 2π

0
cos φ dφ

∫ R

0
z2 dz

xG = 0

yG =
1

MΩ

∫ R

0
r5 dr

∫ 2π

0
sin φ dφ

∫ π

π/2
cos2 θ sin2 θ dθ

+
1

MΩ

∫ R

0
ρ2 dρ

∫ 2π

0
sin φ dφ

∫ R

0
z2 dz

yG = 0

zG =
1

MΩ

∫∫∫
Ω

z3 dx dy dz

=
1

MΩ

∫ R

0
r5 dr

∫ 2π

0
dφ

∫ π

π/2
cos3 θ sin θ dθ

+
1

MΩ

∫ R

0
ρ dρ

∫ 2π

0
dφ

∫ R

0
z3 dz

=
15

7πR3

(
R6

6
2π
[
− 1

4
cos4 θ

]π

π/2
+

R2

2
2π

R4

4

)
=

15πR6

7πR3

(
−1

3
1
4
+

1
4

)
=

15R3

7
−1 + 3

12

zG =
5R3

14
.

En conclusion, le baricentre

G =

(
0, 0,

5R3

14

)
se trouve dans la partie cylindrique, car

5R3

14
> 0.

À noter que le baricentre se trouve à l’intérieur de Ω seulement si

5R3

14
≤ R,

ce qui se vérifie si
R ≤

√
14/5.

4 Exercices

Exercice 1
Calculer

I =
∫∫

D
f (x, y)dxdy
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où D est le rectangle de sommets O, A(π, 0), B(0, 1), C(π, 1) et

f (x, y) = 2y sin x.

Correction H [09.0002]

Exercice 2
Calculer

I =
∫∫

D
f (x, y)dxdy

où D est le triangle de sommets O, A(1, 0), B(1, 1) et

f (x, y) = x − y

Correction H [09.0003]

Exercice 3
Calculer

I =
∫∫

D
f (x, y)dxdy

où D est le triangle de sommets O, A(1, 0), B(0, 1) et

f (x, y) = x2y

Correction H [09.0005]

Exercice 4
Calculer

I =
∫∫

D
f (x, y)dxdy

où D est le triangle de sommets O, A(2, 0), B(0, 2) et

f (x, y) = xex sin y

Correction H [09.0006]

Exercice 5
Calculer

I =
∫∫

D
f (x, y)dxdy

où D est le triangle de sommets A(1, 0), B(0, 1), C(0,−1) et

f (x, y) = x + 2y.

Correction H [09.0001]

Exercice 6
Calculer

I =
∫∫

D
f (x, y)dxdy
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où
D =

{
(x, y) ∈ R2 ; |x| ≤ a, |y| ≤ b

}
et

f (x, y) = (x + y)ex−y

Correction H [09.0007]

Exercice 7
Calculer

I =
∫∫

D
f (x, y)dxdy

où D est le trapèze dont la base est le segment de l’axe des x dont les abscisses sont comprises entre -1 et 1 et dont
les trois autres côtés sont situés dans le demi-plan des y positifs et de longueur 1 , et

f (x, y) = y

Correction H [09.0008]

Exercice 8
Calculer

I =
∫∫

D
f (x, y)dxdy

où D est l’ensemble des points du plan qui vérifient les inégalités
√

x +
√

y ≥ 1 et
√

1 − x +
√

1 − y ≥ 1

et
f (x, y) = (x − y)2

Correction H [09.0009]

Exercice 9
Calculer

I =
∫∫

D
f (x, y)dxdy

où

D =

{
(x, y) ∈ R2

∣∣∣∣ 0 ≤ x ≤ 1 − y2

4

}
et

f (x, y) = x2 + y2

Correction H [09.0010]

Exercice 10
Calculer

I =
∫∫

D
f (x, y)dxdy

où D est l’ensemble des points du disque de centre O et de rayon 1 , tels que x + y ≥ 1 et

f (x, y) =
xy

(x2 + y2)
2
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Correction H [09.0011]

Exercice 11
Calculer

I =
∫∫

D
f (x, y)dxdy

où D est l’intersection des disques limités par les cercles d’équations réespectives

x2 + y2 − 2Rx = 0 et x2 + y2 − 2Ry = 0,

et

f (x, y) = x2 − y2.

Correction H [09.0012]

Exercice 12
Calculer

I =
∫∫

D
f (x, y)dxdy

où D est le disque de centre O et de rayon a et

f (x, y) = (x + y)2

Correction H [09.0013]

Exercice 13
Calculer

I =
∫∫

D
f (x, y)dxdy

où D est le quart de cercle de centre O et de rayon b, situé dans le quart de plan des coordonnées positives, privé de
l’origine, et

f (x, y) =
1

x + y
.

Correction H [09.0014]

Exercice 14
Calculer

I =
∫∫

D
f (x, y)dxdy

où

D =
{
(x, y) | y ≥ 0, x2 + y2 − x ≥ 0, x2 + y2 − 2x ≤ 0

}
\{(0, 0)},

et

f (x, y) =
x − y

x2 + y2 .

27 - 43



Correction H [09.0015]
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Correction de l’exercice 1 N

Comme on intégre sur un rectangle une fonction dont les variables se séparent, on a immédiatement :

I =
(∫ π

0
sin xdx

)(∫ 1

0
2ydy

)
= [− cos x]π0

[
y2
]1

0
= 2

Correction de l’exercice 2 N

La droite OB a pour équation

y = x
Lorsque x est compris entre 0 et 1 , le nombre y varie de 0 à x. Donc

Iy(x) =
∫ x

0
(x − y)dy =

[
− (x − y)2

2

]y=x

y=0
=

x2

2

On a alors

I =
∫ 1

0
Iy(x)dx =

1
2

∫ 1

0
x2dx =

[
x3

6

]1

0
=

1
6

.

Correction de l’exercice 3 N
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La droite AB a pour équation

y = 1 − x

Lorsque x est compris entre 0 et 1 , le nombre y varie de 0 à 1 − x. Donc

Iy(x) =
∫ 1−x

0
yx2dy = x2

[
y2

2

]y=1−x

y=0
=

x2(x − 1)2

2

On a alors

I =
∫ 1

0
Iy(x)dx =

1
2

∫ 1

0

(
x4 − 2x3 + x2

)
dx =

1
2

[
x5

5
− x4

2
+

x3

3

]1

0
=

1
2

(
1
5
− 1

2
+

1
3

)
=

1
60

Correction de l’exercice 4 N

La droite AB a pour équation

y = 2 − x

Lorsque x est compris entre 0 et 2 , le nombre y varie de 0 à 2 − x. Donc

Iy(x) =
∫ 2−x

0
xex sin ydy = xex[− cos y]y=2−x

y=0 = xex(1 − cos(x − 2)).

Alors

I =
∫ 2

0
Iy(x)dx =

∫ 2

0
xexdx −

∫ 2

0
xex cos(x − 2)dx.

En intégrant par parties, on obtient tout d’abord∫ 2

0
xexdx = [xex]20 −

∫ 2

0
exdx = [(x − 1)ex]20 = e2 + 1

D’autre part ∫ 2

0
xex cos(x − 2)dx = Re

∫ 2

0
xexei(x−2)dx = Re

(
e−2i

∫ 2

0
xe(1+i)xdx

)
On intègre de nouveau par parties ce qui donne

∫ 2

0
xe(1+i)xdx =

[
x

e(1+i)x

1 + i

]2

0

−
∫ 2

0

e(1+i)x

1 + i
dx =

[
x

e(1+i)x

1 + i
− e(1+i)x

(1 + i)2

]2

0

Mais
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1
1 + i

=
1 − i

2
et

1
(1 + i)2 =

[
1 − i

2

]2
= − i

2

d’où ∫ 2

0
xe(1+i)xdx =

1
2

[
x(1 − i)e(1+i)x + ie(1+i)x

]2

0
=

1
2

[
((1 − i)x + i)e(1+i)x

]2

0
=

1
2

(
(2 − i)e2+2i − i

)
Alors

e−2i
∫ 2

0
xe(1+i)xdx =

1
2

(
(2 − i)e2 − ie−2i

)
et

Re
(

e−2i
∫ 2

0
xe(1+i)xdx

)
= e2 − sin 2

2

Finalement

I = e2 + 1 −
(

e2 − sin 2
2

)
= 1 +

sin 2
2

.

Correction de l’exercice 5 N

Les droites AB et AC ont pour équations respectives

y = 1 − x et y = −1 + x

Lorsque x est compris entre 0 et 1 , le nombre y varie de x − 1 à 1 − x. Donc

Iy(x) =
∫ 1−x

x−1
(x + 2y)dy =

[
xy + y2

]y=1−x

y=x−1
= x(1 − x) + (x − 1)2 −

(
x(x − 1) + (x − 1)2

)
= 2x(1 − x).

On a alors

I =
∫ 1

0
Iy(x)dx =

∫ 1

0

(
2x − 2x2

)
dx =

[
x2 − 2x3

3

]1

0
= 1 − 2

3
=

1
3

.

31 - 43



Correction de l’exercice 6 N

On intègre sur un rectangle. Lorsque x est compris entre −a et a, l’ordonnée y varie de −b à b. Donc

Iy(x) =
∫ b

−b
(x + y)ex−ydy

En intégrant par parties

Iy(x) =
[
−(x + y)ex−y]y=b

y=−b +
∫ b

−b
ex−ydy =

[
−(x + y + 1)ex−y]y=b

y=−b = −(x + b + 1)ex−b + (x − b + 1)ex+b

On a alors

I =
∫ a

−a
Iy(x)dx =

∫ a

−a

[
(x − b + 1)ex+b − (x + b + 1)ex−b

]
dx.

En intégrant de nouveau par parties

I =
[
(x − b + 1)ex+b

]+a

−a
−
∫ a

−a
ex+bdx −

([
(x + b + 1)ex−b

]+a

−a
−
∫ a

−a
ex−bdx

)
=
[
(x − b)ex+b

]+a

−a
−
[
(x + b)ex−b

]+a

−a

= (a − b)ea+b + (a + b)eb−a − (a + b)ea−b + (b − a)e−(a+b)

= (a − b)
(

ea+b − e−(a+b)
)
+ (a + b)

(
eb−a − ea−b

)
= 2(a − b) sh(a + b) + 2(a + b) sh(b − a)

Correction de l’exercice 7 N
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Si l’on note A(−1, 0), B(1, 0) et A′ et B′ les autres sommets du trapèze, on a AA′ = A′B′ = BB′ = 1. Les triangles
OBB′, OB′A′ et OAA′ sont équilatéraux. Alors la droite passant par A′ et B′ a pour équation

y = sin
π

3
=

√
3

2
la droite passant par B et B′ a pour équation

y = − tan
π

3
(x − 1) = −

√
3(x − 1)

et celle passant par A et A′ a pour équation

y =
√

3(x + 1)

Lorsque y est fixé entre 0 et
√

3
2 , la variable x est comprise entre −1 + y√

3
et 1 − y√

3
, et l’on a

Ix(y) = y
∫ 1−y/

√
3

−1+y/
√

3
dx = 2y

(
1 − y√

3

)
Alors

I =
∫ √

3/2

0
Ix(y)dy =

∫ √
3/2

0
2y
(

1 − y√
3

)
dy =

[
y2 − 2

3
√

3
y3
]√3/2

0
=

1
2

Correction de l’exercice 8 N

Si (x, y) appartient à D, on a nécessairement 0 ≤ x ≤ 1 et 0 ≤ y ≤ 1. Alors la condition

√
x +

√
y ≥ 1

équivaut à

√
y ≥ 1 −

√
x

puis à

y ≥ (1 −
√

x)2 = 1 + x − 2
√

x

De même, la condition
√

1 − x +
√

1 − y ≥ 1
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équivaut à

√
1 − y ≥ 1 −

√
1 − x

puis à

1 − y ≥ (1 −
√

1 − x)2

et enfin à

y ≤ 1 − (1 −
√

1 − x)2 = x − 1 + 2
√

1 − x.

Pour x compris entre 0 et 1 , on calcule

Iy(x) =
∫ x−1+2

√
1−x

1+x−2
√

x
(y − x)2dy

=

[
(y − x)3

3

]y=x−1+2
√

1−x

y=1+x−2
√

x

=
1
3

[
(2
√

1 − x − 1)3 − (1 − 2
√

x)3
]

=
1
3

[
8
(

x3/2 + (1 − x)3/2
)
+ 6(

√
x +

√
1 − x)− 14

]
.

Alors

I =
∫ 1

0
Iy(x)dx

=
∫ 1

0

1
3

[
8
(

x3/2 + (1 − x)3/2
)
+ 6(

√
x +

√
1 − x)− 14

]
dx

=
1
3

[
16
5

(
x5/2 − (1 − x)5/2

)
+ 4

(
x3/2 − (1 − x)3/2

)
− 14x

]1

0

=
1
3

[
16
5

+ 4 − 14 +
16
5

+ 4
]

=
2

15
.

Correction de l’exercice 9 N
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Lorsque y est compris entre -2 et 2 , le nombre x varie de 0 à 1 − y2

4 . Donc

Ix(y) =
∫ 1−y2/4

0

(
x2 + y2

)
dx =

[
y2x +

x3

3

]x=1−y2/4

x=0
= y2

(
1 − y2

4

)
+

1
3

(
1 − y2

4

)3

=
1
3
+

3y2

4
− 3y4

16
− y6

192

On a alors

I =
∫ 2

−2
Ix(y)dy =

∫ 2

−2

(
1
3
+

3y2

4
− 3y4

16
− y6

192

)
dy =

[
y
3
+

y3

4
− 3y5

80
− y7

1344

]2

−2
=

96
35

Correction de l’exercice 10 N

La partie supérieure du cercle a pour équation y =
√

1 − x2. Pour x compris entre 0 et 1 , le nombre y est compris
entre 1 − x et

√
1 − x2. On calcule
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Iy(x) =
∫ √

1−x2

1−x

xy

(x2 + y2)
2 dy =

[
−x

2 (x2 + y2)

]y=
√

1−x2

y=1−x
=

x
2 (2x2 − 2x + 1)

− x
2

On a alors

I =
∫ 1

0
Iy(x)dx =

∫ 1

0

(
x

2 (2x2 − 2x + 1)
− x

2

)
dx

En faisant apparaître au numérateur la dérivée du dénominateur, on obtient

I =
∫ 1

0

(
1
8

4x − 2
2x2 − 2x + 1

+
1
4

1
2x2 − 2x + 1

− x
2

)
dx

=

[
1
8

ln
(

2x2 − 2x + 1
)
+

1
4

Arctan(2x − 1)− x2

4

]1

0

=
1
4
(Arctan 1 − Arctan(−1))− 1

4
=

π

8
− 1

4

Correction de l’exercice 11 N

Le domaine D est symétrique par rapport à la première bissectrice. Sur D, on a

f (y, x) = − f (x, y)

Alors nécessairement I = 0.
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Correction de l’exercice 12 N

Le domaine D est obtenu lorsque les coordonnées polaires (r, t) parcourent le rectangle

∆ = [0, a]× [−π, π].

D’autre part

f (r cos t, r sin t) = (r cos t + r sin t)2 = r2(1 + sin 2t).

Donc

I =
∫∫

∆
f (r cos t, r sin t)rdrdt =

∫∫
∆

r3(1 + sin 2t)drdt.

Comme les variables se séparent, on a immédiatement

I =
(∫ a

0
r3dr

)(∫ π

−π
(1 + sin 2t)dt

)
=

[
r4

4

]a

0

[
t − cos 2t

2

]π

−π

=
πa4

2
.

Correction de l’exercice 13 N
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Le domaine D est obtenu lorsque les coordonnées polaires (r, t) parcourent le rectangle

∆ =]0, b]× [0, π/2].

D’autre part

f (r cos t, r sin t) =
1

r(cos t + sin t)
.

Donc

I =
∫∫

∆
f (r cos t, r sin t)rdrdt =

∫∫
∆

drdt
sin t + cos t

Comme les variables se séparent, on a immédiatement

I =
(∫ b

0
dr
)(∫ π/2

0

dt
sin t + cos t

)
= b

∫ π/2

0

dt√
2 sin

(
t + π

4
) .

En écrivant

sin
(

t +
π

4

)
=

2 tan
( t

2 + π
8
)

1 + tan2
( t

2 + π
8
)

on obtient

I =
b√
2

∫ π/2

0

1 + tan2 ( t
2 + π

8
)

2 tan
( t

2 + π
8
) dt =

b√
2

[
ln
∣∣∣∣tan

(
t
2
+

π

8

)∣∣∣∣]π/2

0
=

b√
2

ln
tan 3π

8
tan π

8
.

En partant de

1 = tan
π

4
=

2 tan π
8

1 − tan2 π
8

on trouve que tan π
8 est la racine positive du trinôme X2 + 2X − 1, donc

tan
π

8
=

√
2 − 1

Par ailleurs

tan
3π

8
= tan

(π

2
− π

8

)
=

1
tan π

8
=

√
2 + 1

d’où

I =
b√
2

ln(
√

2 + 1)2 =
√

2b ln(
√

2 + 1)

Correction de l’exercice 14 N
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Le domaine D est la partie du plan comprise entre le cercle de centre (1, 0) et de rayon 1 , et le cercle de centre
(1/2, 0) et de rayon 1/2 située dans le demi-plan des y positifs.
Le premier cercle a pour équation polaire

r = cos t

et le second

r = 2 cos t

On intègre donc sur le domaine

∆ =
{
(r, t)

∣∣∣ 0 ≤ t <
π

2
, cos t ≤ r ≤ 2 cos t

}
Utilisons les coordonnées polaires pour intégrer les fonctions positives sur D

f1(x, y) =
x

x2 + y2 et f2(x, y) =
y

x2 + y2

On a

f1(r cos t, r sin t) =
cos t

r
et f2(r cos t, r sin t) =

sin t
r

On a donc

I1 =
∫∫

∆
f1(r cos t, r sin t)rdrdt =

∫∫
∆

cos tdrdt et I2 =
∫∫

∆
f2(r cos t, r sin t)rdrdt =

∫∫
∆

sin tdrdt

On a tout d’abord

(I1)r (t) =
∫ 2 cos t

cos t
cos tdr = cos2 t et (I2) r(t) =

∫ 2 cos t

cos t
sin tdr = cos t sin t

Puis

I1 =
∫ π/2

0
(I1) r(t)dt =

∫ π/2

0
cos2 tdt =

∫ π/2

0

1 + cos 2t
2

dt =
1
2

[
t +

sin 2t
2

]π/2

0
=

π

4

et

I2 =
∫ π/2

0
(I2)r (t)dt =

∫ π/2

0
sin t cos tdt =

∫ π/2

0

sin 2t
2

dt =
1
2

[
−cos 2t

2

]π/2

0
=

1
2

Finalement

I = I1 − I2 =
π − 2

4
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Email : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Auteurs de ces notes de cours

Cours et exercices rédigés par Antoine Géré.
Relu par (coming soon).
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