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1 Logarithme et exponentielle

1.1 Logarithme

Proposition 1.
Il existe une unique fonction, notée

ln : ]0,+∞[ → R

telle que :

ln′(x) =
1
x

pour tout x > 0 et ln(1) = 0.

De plus cette fonction vérifie, pour tout a, b > 0 :

1. ln(a × b) = ln(a) + ln(b),

2. ln
(

1
a

)
= − ln(a),

3. ln(an) = n ln(a), pour tout n ∈ N

4. ln est une fonction continue, strictement croissante et définit une bijection de ]0,+∞[ sur R,

5. lim
x→0

ln(1 + x)
x

= 1,

6. la fonction ln est concave et ln(x) ≤ x − 1 pour tout x > 0.

x

y

ln(x)

e

1

10

Remarque.

■ La fonction ln x s’appelle le logarithme naturel ou aussi logarithme néperien. Il est caractérisé par ln(e) = 1.
On définit le logarithme en base a par

loga(x) =
ln(x)
ln(a)

.

De sorte que loga(a) = 1. Pour a = 10 on obtient le logarithme décimal log10 qui vérifie

log10(10) = 1 et donc log10(10n) = n.

Dans la pratique on utilise l’équivalence

x = 10y ⇐⇒ y = log10(x)
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■ Nous avons les deux limites usuelles suivantes

lim
x→+∞

ln(x)
x

= 0 et lim
x→0

x ln(x) = 0

1.2 Exponentielle

Définition 1.
La bijection réciproque de ln : ]0,+∞[→ R s’appelle la fonction exponentielle, notée exp : R →]0,+∞[.

x

y exp(x)

e

1

10

Pour x ∈ R on note aussi ex pour exp x.

Proposition 2.
La fonction exponentielle vérifie les propriétés suivantes :

• exp (ln(x)) = x pour tout x > 0 et ln (exp(x)) = x pour tout x ∈ R

• exp(a + b) = exp(a)× exp(b)

• exp(nx) = (exp(x))n

• exp : R →]0,+∞[ est une fonction continue, strictement croissante vérifiant

lim
x→−∞

exp(x) = 0 et lim
x→+∞

exp(x) = +∞.

• La fonction exponentielle est dérivable et

exp′(x) = exp(x),

pour tout x ∈ R. Elle est convexe et exp(x) ≥ 1 + x.

• Nous avons les deux limites usuelles suivantes

lim
x→+∞

exp(x)
x

= +∞ et lim
x→−∞

x exp(x) = 0

Remarque.
La fonction exponentielle est l’unique fonction qui vérifie pour tout x ∈ R la relation exp′(x) = exp(x) et exp(1) = e,
où e ≃ 2, 718 . . . est le nombre qui vérifie ln e = 1.

1.3 Fonctions puissances
Par définition, pour a > 0 et b ∈ R, on a

ab = exp (b ln(a)) .
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Remarque.

•
√

a = a
1
2 = exp

(
1
2 ln(a)

)
• n

√
a = a

1
n = exp

(
1
n ln(a)

)
, la racine n-ème de a

• On note aussi exp(x) par ex ce qui se justifie par le calcul : ex = exp (x ln(e)) = exp(x).

• Les fonctions x 7→ ax s’appellent aussi des fonctions exponentielles et se ramènent systématiquement à la
fonction exponentielle classique par l’égalité

ax = exp (x ln(a)) .

Il ne faut surtout pas les confondre avec les fonctions puissances

x 7→ xa.

Proposition 3.
Soit x, y > 0 et a, b ∈ R.

• xa+b = xaxb

• x−a = 1
xa

• (xy)a = xaya

• (xa)b = xab

• ln(xa) = a ln(x)

Comparons les fonctions ln(x), exp(x) avec x :

Proposition 4.

lim
x→+∞

ln(x)
x

= 0

et

lim
x→+∞

exp(x)
x

= +∞.

x

y
xa (a > 1)

xa (a < 1)

exp x

ln x

x

1

10

2 Fonctions circulaires et circulaires inverses

2.1 Cosinus et Arccosinus
Considérons la fonction cosinus

cos :
{

R → [−1, 1]
x 7→ cos(x)

Pour obtenir une bijection à partir de cette fonction, il faut considérer la restriction de cosinus à l’intervalle [0, π].
Sur cet intervalle la fonction cosinus est continue et strictement décroissante, donc la restriction

cos : [0, π] → [−1, 1]

est une bijection. Sa bijection réciproque est la fonction arccosinus :

Arccos : [−1, 1] → [0, π]

On a donc, par définition de la bijection réciproque :

∀x ∈ [−1, 1], cos
(

Arccos(x)
)
= x
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x

y

cos x

0 ππ
2

−π −π
2

+1

−1
x

y

Arccos x

0 1−1

π

π
2

et
∀x ∈ [0, π], Arccos

(
cos(x)

)
= x

Autrement dit, si x ∈ [0, π] on a alors

cos(x) = y ⇐⇒ x = Arccos y

Terminons avec la dérivée de Arccos :

∀x ∈]− 1, 1[, Arccos′(x) =
−1√

1 − x2
.

2.2 Sinus et Arcsinus

Considérons la fonction sinus

sin :
{

R → [−1, 1]
x 7→ sin(x)

Pour obtenir une bijection à partir de cette fonction, il faut considérer la restriction de sinus à l’intervalle
[
−π

2
,

π

2

]
.

Sur cet intervalle la fonction sinus est continue et strictement croissante, donc la restriction

sin :
[
−π

2
,

π

2

]
→ [−1, 1]

est une bijection. Sa bijection réciproque est la fonction arcsinus :

Arcsin : [−1, 1] →
[
−π

2
,

π

2

]

x

y
sin x

0 ππ
2

−π −π
2

+1

−1

x

y

Arcsin x

0 1−1

π
2

−π
2

On a donc, par définition de la bijection réciproque :

∀x ∈ [−1, 1], sin
(

Arcsin(x)
)
= x
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et
∀x ∈ [−π

2
,+

π

2
], Arcsin

(
sin(x)

)
= x

Autrement dit, si x ∈
[
−π

2
,

π

2

]
on a alors

sin(x) = y ⇐⇒ x = Arcsin(y)

Terminons avec la dérivée de Arcsin :

∀x ∈]− 1, 1[, Arcsin′(x) =
1√

1 − x2

2.3 Tangente et Arctangente
Considérons la fonction tangente

tan :

{ ]
−π

2
+ kπ,

π

2
+ kπ

[
→ R

x 7→ tan(x)
k ∈ Z.

Pour obtenir une bijection à partir de cette fonction, il faut considérer la restriction de tan à l’intervalle
]
−π

2
,

π

2

[
.

Sur cet intervalle la fonction tangente est continue et strictement croissante, donc la restriction

tan :
]
−π

2
,

π

2

[
→ R

est une bijection. Sa bijection réciproque est la fonction arctangente :

Arctan : R →
]
−π

2
,

π

2

[

x

y tan x

π
2−π

2
3π
2

π−π

On a donc, par définition de la bijection réciproque :

∀x ∈ R, tan
(

Arctan(x)
)
= x

et
∀x ∈]− π

2
,+

π

2
[, Arctan

(
tan(x)

)
= x

Autrement dit, si x ∈
]
−π

2
,

π

2

[
on a alors

tan(x) = y ⇐⇒ x = Arctan(y)

Terminons avec la dérivée de Arctan :

∀x ∈ R, Arctan′(x) =
1

1 + x2
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x

y

Arctan x

0

π
2

−π
2

2.4 Trigonométrie circulaire

2.4.1 Le cercle trigonométrique

x

y

30◦

60◦
90◦

120◦

150◦

180◦

210◦

240◦
270◦

300◦

330◦

360◦

45◦135◦

225◦ 315◦

π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6

π

7π
6

5π
4

4π
3

3π
2

5π
3

7π
4

11π
6

2π

(√
3

2 , 1
2

)
(√

2
2 ,

√
2

2

)
(

1
2 ,

√
3

2

)

(
−

√
3

2 , 1
2

)
(
−

√
2

2 ,
√

2
2

)
(
− 1

2 ,
√

3
2

)

(
−

√
3

2 ,− 1
2

)
(
−

√
2

2 ,−
√

2
2

)
(
− 1

2 ,−
√

3
2

)

(√
3

2 ,− 1
2

)
(√

2
2 ,−

√
2

2

)
(

1
2 ,−

√
3

2

)

(−1, 0) (1, 0)

(0,−1)

(0, 1)

Voici le cercle trigonométrique (de rayon 1), le sens de lecture est l’inverse du sens des aiguilles d’une montre. Les

7 - 45



angles remarquables sont marqués de 0 à 2π (en radian) et de 0◦ à 360◦. Les coordonnées des points correspondant
à ces angles sont aussi indiquées.

2.4.2 Les fonctions sinus, cosinus, tangente

La fonction cosinus est périodique de période 2π et elle paire (donc symétrique par rapport à l’axe des ordonnées).
La fonction sinus est aussi périodique de période de 2π mais elle impaire (donc symétrique par rapport à l’origine).

x

y
cos x

sin x
0 π 2π−π 3π

+1

−1

Voici un zoom sur l’intervalle [−π, π].

x

y

cos x

sin x
0 ππ

2
−π −π

2

+1

−1

Pour tout x n’appartenant pas à
{

. . . ,−π

2
,

π

2
,

3π

2
,

5π

2
, . . .

}
la fonction tangente est définie par

tan x =
sin x
cos x

La fonction x 7→ tan x est périodique de période π ; c’est une fonction impaire.
Voici les dérivées :

cos(x)′ = − sin(x) sin(x)′ = cos(x) tan(x)′ = 1 + tan2(x) =
1

cos2(x)

2.4.3 Formulaire

Voici un lien d’une vidéo présentant un moyen simple de retenir l’intégralité du formulaire de trigonométrie.

cos2(a) + sin2(a) = 1

et

∀x ∈]− 1, 1[, Arccos(x) + Arcsin(x) =
π

2

Les formules d’additions

cos(a + b) = cos(a) · cos(b)− sin(a) · sin(b)
sin(a + b) = sin(a) · cos(b) + sin(b) · cos(a)

tan(a + b) =
tan(a) + tan(b)

1 − tan(a) · tan(b)

Il est bon de connaître par cœur les formules de duplications suivantes (faire a = b dans les formules d’additions) :
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cos(2a) = 2 cos2(a)− 1 = 1 − 2 sin2 a = cos2 a − sin2 a
sin(2a) = 2 sin(a) · cos(a)

tan(2a) =
2 tan(a)

1 − tan2(a)

Les formules de linéarisation :

cos(a) · cos(b) =
1
2
(cos(a + b) + cos(a − b))

sin(a) · sin(b) =
1
2
(cos(a − b)− cos(a + b))

sin(a) · cos(b) =
1
2
(sin(a + b) + sin(a − b))

Les formules de factorisation :

cos(p) + cos(q) = 2 cos
(

p + q
2

)
· cos

(
p − q

2

)
cos(p)− cos(q) = −2 sin

(
p + q

2

)
· sin

(
p − q

2

)
sin(p) + sin(q) = 2 sin

(
p + q

2

)
· cos

(
p − q

2

)
sin(p)− sin(q) = 2 sin

(
p − q

2

)
· cos

(
p + q

2

)
Enfin les formules de la « tangente de l’arc moitié » permettent d’exprimer sinus, cosinus et tangente en fonction de
tan x

2 . On pose

t = tan
( x

2

)
on a alors

cos(x) =
1 − t2

1 + t2

sin(x) =
2t

1 + t2

tan(x) =
2t

1 − t2

Ces formules sont utiles pour le calcul de certaines intégrales par changement de variable, en utilisant en plus la
relation

dx =
2dt

1 + t2 .

3 Fonctions hyperboliques et hyperboliques inverses

3.1 Cosinus hyperbolique et son inverse
Pour x ∈ R, le cosinus hyperbolique est définie par la relation

ch :


R → [1,+∞[

x 7→ ex + e−x

2
Pour obtenir une bijection à partir de cette fonction, il faut considérer la restriction de cosinus hyperbolique à
l’intervalle [0,+∞[. Sur cet intervalle la fonction cosinus hyperbolique est continue et strictement croissante, donc
la restriction

ch : [0,+∞[ → [1,+∞[
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x

y
chx

1

0

est une bijection.
Sa bijection réciproque est la fonction arrgument cosinus hyperbolique :

Argch : [1,+∞[→ [0,+∞[.

x

y

Argchx
1

10

Proposition 5.

• Pour tout x ∈ [0,+∞[ et y ∈ [1,+∞[ on a

y = ch(x) ⇐⇒ Argch(y) = x

• Pour tout x ∈ [0,+∞[ on a
Argch (ch(x)) = x

• Pour tout y ∈ [1,+∞[ on a
ch (Argch(y)) = y

La fonction Argch ◦ ch est définie sur R mais ce n’est pas l’identité sur R. Pour x < 0 on a

Argch (ch(x)) = −x.

Terminons avec la dérivée de Argch :

∀y > 1, Argch′(y) =
1√

y2 − 1

Définition de Argch(y) pour y ≥ 1.

Pour tout x ≥ 0 et y ≥ 1 on a
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Argch(y) = x ⇐⇒ y = ch(x)

⇐⇒ y =
ex + e−x

2
⇐⇒ 2y = ex + e−x

⇐⇒ ex +
1
ex = 2y

⇐⇒ e2x + 1
ex = 2y

⇐⇒ e2x + 1 = 2y ex

⇐⇒ e2x − 2y ex + 1 = 0

Argch(y) = x ⇐⇒ (ex)2 − 2yex + 1 = 0

On étudie alors le trinome du second degré :

X2 − 2yX + 1 = 0

Or

X2 − 2yX + 1 = (X − y)2 − y2 + 1

= (X − y)2 − (y2 − 1)

=

(
X − y −

√
y2 − 1

)(
X − y +

√
y2 − 1

)
Le trinome a deux racines réelles strictement positive,

y +
√

y2 − 1 et y −
√

y2 − 1

Or on souhaite x ≥ 0 on conserve donc uniquement la solultion supérieure à 1. On a alors

Argch(y) = x ⇐⇒ ex = y +
√

y2 − 1

Donc pour y ≥ 1 on a

Argch(y) = ln
(

y +
√

y2 − 1
)

.

3.2 Sinus hyperbolique et son inverse
Pour x ∈ R, le sinus hyperbolique est définie par la relation

sh :


R → R

x 7→ ex − e−x

2
La fonction sinus hyperbolique est continue et strictement croissante sur R, donc elle forme une bijection. Sa bijection
réciproque est la fonction arrgument sinus hyperbolique :

Argsh : R → R.

Proposition 6.
• ch2(x)− sh2(x) = 1

• ch′(x) = sh x, et sh′(x) = ch(x)
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x

y

shx

Argshx

1

0

• Argsh : R → R est strictement croissante et continue.

• Argsh est dérivable et

Argsh′(x) =
1√

x2 + 1
.

• Pour tout x ∈ R et y ∈ R on a

y = sh(x) ⇐⇒ Argsh(y) = x

• Pour tout x ∈ R on a
Argsh (sh(x)) = x

• Pour tout y ∈ R on a
sh (Argsh(y)) = y

Définition de Argsh(y) pour y ≥ 1.

Pour tout x ∈ R et y ∈ R on a

Argsh(y) = x ⇐⇒ y = sh(x)

⇐⇒ y =
ex − e−x

2
Argsh(y) = x ⇐⇒ (ex)2 − 2yex − 1 = 0

On étudie alors le trinome du second degré :

X2 − 2yX − 1 = 0

Ses solutions sont ∀y ∈ R

y −
√

y2 + 1 < 0 et y +
√

y2 + 1 > 0
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On conserve donc uniquement la solultion positive. On a alors

Argsh(y) = x ⇐⇒ ex = y +
√

y2 + 1

Donc pour y ∈ R on a

Argsh(y) = ln
(

y +
√

y2 + 1
)

.

3.3 Tangente hyperbolique et son inverse
La fonction tangente hyperbolique est definie comme

th(x) =
sh(x)
ch(x)

.

La fonction th est continue et strictement croissante sur R. On a

lim
x→+∞

th(x) = 1 et lim
x→−∞

th(x) = −1

la fonction tangente hyperbolique est donc une bijection de R sur ]− 1, 1[.

x

y

thx1

−1

0

La bijection reciproque est appelée arrgument tangente hyperbolique et notée Argth.

x

y
Argthx

1−1 0

Proposition 7.

• Pour tour x ∈ R et y ∈]− 1, 1[ on a

y = th(x) ⇐⇒ Argth(y) = x

• Pour tour x ∈ R on a
Argth (th(x)) = x
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• Pour tour y ∈]− 1, 1[ on a
th (Argth(y)) = y

La afonction tangente hyperbolique et sa bijection réciproque sont tputes les deux dérivable.

Proposition 8.

• Pour tour x ∈ R on a
th(x)′ = 1 − th(x)2.

• Pour tour y ∈]− 1, 1[ on a

Argth(y)′ =
1

1 − y2

Définition de Argth(y) pour y ∈]− 1, 1[.

1
1 − y2 =

1
(1 − y)(1 + y)

=
1
2

1
1 − y

+
1
2

1
1 + y

Les primitives de y 7→ 1
1 − y2 sur ]− 1, 1[ sont

y 7→ −1
2

ln (1 − y) +
1
2

ln (1 + y) + K =
1
2

ln
(

1 + y
1 − y

)
+ K

avec K ∈ R. Argth est la primitive de y 7→ 1
1 − y2 qui s’annule en 0, donc pour y ∈]− 1, 1[ on a

Argth(y) =
1
2

ln
(

1 + y
1 − y

)
.

3.4 Trigonométrie hyperbolique
On a une première relation :

ch2 x − sh2 x = 1

Formules d’additions :

ch(a + b) = ch a · ch b + sh a · sh b sh(a + b) = sh a · ch b + sh b · ch a th(a + b) =
th a + th b

1 + th a · th b

Formules de duplications :

ch(2a) = ch2 a + sh2 a = 2 ch2 a − 1 = 1 + 2 sh2 a

sh(2a) = 2 sh a · ch a th(2a) =
2 th(a)

1 + th(a)2
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Formules de factorisation :

ch(p) + ch(q) = 2 ch
(

p + q
2

)
ch
(

p − q
2

)
ch(p)− ch(q) = 2 sh

(
p + q

2

)
sh
(

p − q
2

)
sh(p) + sh(q) = 2 sh

(
p + q

2

)
ch
(

p − q
2

)
sh(p)− sh(q) = 2 ch

(
p + q

2

)
sh
(

p − q
2

)
th(p) + th(q) =

sh(p + q)
ch(p) ch(q)

th(p)− th(q) =
sh(p − q)

ch(p) ch(q)

Dérivées :

ch′ x = sh x

sh′ x = ch x

th′(x) = 1 − th2 x =
1

ch2 x

Argch′(x) =
1√

x2 − 1
(x > 1)

Argsh′(x) =
1√

x2 + 1

Argth′(x) =
1

1 − x2 (|x| < 1)

Expressions des fonctions hyperboliques réciproque :

Argch(x) = ln
(
x +

√
x2 − 1

)
(x ≥ 1)

Argsh(x) = ln
(
x +

√
x2 + 1

)
(x ∈ R)

Argth(x) =
1
2

ln
(

1 + x
1 − x

)
(−1 < x < 1)
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4 Exercices

Exercice 1
Résoudre sur R les équations suivantes

1. e2x − ex − 6 = 0

2. 3ex − 7e−x − 20 = 0.

Correction H [07.0000]

Exercice 2
Résoudre les systèmes d’équations suivantes :

1.
{

exey = 10
ex−y = 2

5

2.
{

ex − 2ey = −5
3ex + ey = 13

3.

{
5ex − ey = 19

ex+y = 30

Correction H [07.0001]

Exercice 3 Limites et exponentielle

Déterminer les limites suivantes

1. lim
x→+∞

ex

2ex + e−2x 2. lim
x→−∞

ex

2ex + e−2x

Correction H [07.0002]

Exercice 4 Les principales formes indéterminées

Déterminer les limites suivantes

1. lim
x→+∞

(
exp(x)− x3

)
2. lim

x→+∞
(ln(x)− x −

√
x)

3. lim
x→+∞

x2 + 1
x + 1

4. lim
x→+∞

7x + ln(x)
7x + exp(x)

5. lim
x→+∞

ln(x)
exp(

√
3x)

6. lim
x→0+

x exp
(

1
x
− 1
)

7. lim
x→+∞

√
x + 2 −

√
x + 7

Correction H [07.0003]

Exercice 5
Calculer les dérivées des fonctions suivantes. C’est un exercice d’entraînement au calcul, on ne demande pas de
déterminer les ensembles sur lesquels les fonctions sont dérivables.
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1. f (x) = 4x3 − 3x2 + x − 7.

2. f (x) =
4x − 1
7x + 2

.

3. f (x) =
x

x2 − 3
.

4. f (x) = 6
√

x.

5. f (x) = 4 sin x + cos(2x).

6. f (x) = cos(−2x + 5).

7. f (x) = sin x2.

8. f (x) = sin2 x. (On peut aussi noter (sin x)2 )

9. f (x) = tan x.

10. f (x) = (2x − 5)4. (Développement déconseillé)

11. f (x) = 7
x2−9 .

12. f (x) =
√

4x2 − 3.

13. f (x) = 1√
x2+3

.

14. f (x) =
(

4x − 1
x + 2

)3
.

15. f (x) = x ln x − x ;

16. f (x) = ln
(

1
x

)
;

17. f (x) = ln
√

x ;

18. f (x) = (ln x)2 ;

19. f (x) = ln
(
x2)

20. f (x) = exp
(
x2 + 3x − 1

)
;

21. f (x) = e
1
x ;

22. f (x) = eex
;

23. f (x) = e
√

x ln x

Correction H [07.0004]

Exercice 6
On considère la fonction f définie par

f (x) =
sin x

2 + cos x

1. Déterminer le domaine de définition de f . Justifier que f est dérivable sur son domaine de définition.

2. Pour x ∈ R, calculer f (x + 2π) et f (−x). Que peut-on en déduire sur la courbe représentative de f ? En
déduire qu’ill suffit d’étudier f sur [0, π] pour construire toute la courbe représentative de f .

3. Montrer que, pour tout réel x, on a

f ′(x) =
1 + 2 cos x
(2 + cos x)2

4. Étudier le signe de 1 + 2 cos x sur [0, π].

5. Établir le tableau de variations de f sur [0, π].

6. Tracer la courbe représentative de f .

Correction H [07.0005]

Exercice 7
Soit

f (x) = 2 sin(x) + sin(2x)

1. Déterminer l’ensemble de définition D de f .

2. Etudier la parité et la périodicité de f

3. Calculer la dérivée de f

4. Dresser le tableau de variation de f
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5. Tracer la courbe de f .

Correction H [07.0006]

Exercice 8
Soit

f (x) = Arcsin
(

1 + x
1 − x

)
1. Déterminer l’ensemble de définition D de f .

2. Calculer la dérivée de f

3. Dresser le tableau de variation de f

4. Tracer la courbe de f .

Correction H [07.0007]

Exercice 9
Soit

f (x) = Argch
(

1
2

(
x +

1
x

))
1. Déterminer l’ensemble de définition D de f .

2. Simplifier f , si c’est possible.

3. Calculer la dérivée de f

4. Dresser le tableau de variation de f

5. Tracer la courbe de f .

Correction H [07.0008]

Exercice 10
Soit

f (x) = Argsh
(
2x + 8e−x)

1. Déterminer l’ensemble de définition D de f .

2. Calculer la dérivée de f

3. Dresser le tableau de variation de f

4. Tracer la courbe de f .

Correction H [07.0009]

Exercice 11
Soit a ̸= 0 un réel.

1. Déterminer la dérivée de la fonction f définie sur R par

f (x) = Arctan(ax)
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2. En déduire une primitive de
1

4 + x2 .

Correction H [07.0010]

Exercice 12
Soit f la fonction définie par

f (x) = Arcsin
(

1 − 2 cos4(x)
)

1. Déterminer le domaine de définition de f .

2. Etudier la periodicité et la parité de f . En déduire l’intervalle d’étude I le plus petit possible.

3. Calculer la dérivée de f . On l’exprimera sous la forme la plus simple possible.

4. Dresser le tableau de variation de f

5. Tracer son graphe sur trois périodes

Correction H [07.0011]

Exercice 13
Soit f la fonction définie pour tout x ∈ R par

f (x) = 2 Arctan
(√

1 + x2 − x
)
+ Arctan(x)

1. Calculer f (0).

2. Pour tout x réel, calculer la valeur f ′(x) de la dérivée de f au point x.

3. Que dire de f .

Correction H [07.0012]

Exercice 14
Soit f la fonction définie par

f (x) = Arcsin
(

1
ch(x)

)
Et g la fonction définie par

g(x) = Arctan (ex)

1. Déterminer sur quel ensemble f est définie et continue.

2. Calculer f ′(x) et déterminer sur quel ensemble f est dérivable.

3. Calculer g′(x)

4. Pour tout x > 0 trouver une relation entre f (x) et g(x).

Correction H [07.0013]

Exercice 15
Montrer que, pour tout x ≥ 0, on a
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x − x2

2
≤ ln(1 + x) ≤ x

Correction H [07.0016]

Exercice 16
On considère la fonction f définie par

f (x) =
sin(x)

1 + sin(x)

1. Quel est le domaine de définition de f ?

2. Étudier la parité et la périodicité de f . En déduire un intervalle d’étude I le plus petit possible. On justifiera ce
choix.

3. Comparer f (π − x) et f (x). Justifier que l’on peut réduire le domaine d’étude à l’intervalle

J =
]
−π

2
,

π

2

]
4. Calculer les limites de f aux bornes de J.

5. Calculer la dérivée de f .

6. Etablir le tableau de variation de la fonction f .

7. Tracer la courbe représentative de f .

Correction H [07.0015]

Exercice 17
Soit f la fonction définie sur I = R par :

f (x) = sin2(x) +
1
2

cos(x)

1. Etudier la parité de f et sa périodicité, en déduire un intervalle d’étude.

2. Etudier les variations de f sur [0, π].

3. Dresser le tableau de variation de f et tracer le graphe de f .

Correction H [07.0017]

Exercice 18
Soit f la fonction définie sur R par

f (x) =
1
3

cos(3x)− 3
4

cos(2x)

1. Déterminer la période de f , sa parité et en déduire un intervalle d’étude I.

2. Exprimer sin(3x) et sin(2x) en fonction de cos(x) et sin(x).

3. Etudier les variation de f sur I.

4. Calculer f (0), f (x0) et f (π) sous forme rationnelle. Où x0 est l’unique valeur dans ]0, π[ annulant f ′(x).
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5. Dresser le tableau de variation. Tracer sommairement le graphe de f sur trois périodes.

Correction H [07.0018]

Exercice 19
Soit f : [−π, π] → R définie par f (x) = 4x − 5 sin(x)

1. Etudier les variations de f sur [0, π].

2. Montrer que f ′ dans l’intervalle [0, π] s’annule pour une valeur comprise entre π
6 et π

4 .

3. Dresser le tableau de variation de f sur [0, π].

4. Tracer la courbe sur l’intervalle [−π, π].

Correction H [07.0019]

Exercice 20
Soit f la fonction définie sur

[
0, π

2
]

par f (x) = cos(x) + 2
3 x

1. Montrer que 1
2 < 2

3 <
√

2
2 , en déduire un encadrement de Arcsin

( 2
3
)
.

2. Etudier les variations de f sur
[
0, π

2
]
,

3. On donnera un encadrement de f
(
Arcsin

( 2
3
))

.

4. Tracer le graphe de f .

Correction H [07.0020]

Exercice 21
Soit f la fonction définie par :

f (x) = Arcsin
(√

1 − x2
)

1. Sur quel ensemble cette fonction est-elle définie et continue ?

2. Calculer la dérivée f ′(x) pour tous les réels pour lesquels cela ne posent pas de problème.

3. Calculer les limites de f ′(x) en −1+, 1−, ainsi qu’en 0−et 0+. Préciser la nature des demi-tangentes en ces
points.

4. Déterminer les variations de f .

5. Tracer le graphe de f .

Correction H [07.0021]

Exercice 22
Soit f la fonction définie par : f (x) = Arcsin

(
1 − 2 cos4(x)

)
1. Montrer que f est définie et continue sur R.

2. Montrer que f est 2π périodique, quelle est la parité de f ? En déduire un intervalle d’étude I.
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3. Partout où cela ne pose pas de problème, calculer la dérivée de f . On l’exprimera sous la forme la plus simple
possible.

4. Sur quel sous-ensemble de I la fonction f est-elle dérivable ? Préciser la valeur des limites de f ′(x) à droite au
point d’abscisse 0 et à gauche au point d’abscisse π.

5. Dresser le tableau de variation de f

6. Tracer son graphe sur trois périodes

Correction H [07.0022]
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Correction de l’exercice 1 N

1. Posons X = ex. Alors l’équation devient
X2 − X − 6 = 0

Les racines de cette équation sont X = −2 et X = 3. Mais seule la racine positive nous intéresse ici, car
l’exponentielle ne prend que des valeurs strictement positives. On en déduit que l’équation admet une unique
racine, qui est égale à ln 3.

2. On pose de même X = ex. L’équation devient

3X − 7
X

− 20 = 0

qui est encore équivalente à
3X2 − 20X − 7 = 0

(on ne sintéresse qu’aux solutions strictement positives). Les solutions de cette dernière équation sont X = − 1
3

et X = 7. Seule la seconde est strictement positive. On déduit donc que l’équation 3ex − 7e−x − 20 = 0 admet
une unique solution donnée par x = ln(7).

Correction de l’exercice 2 N

1. La première équation est équivalente à ex+y = 10 ou encore, en utilisant le logarithme, à x + y = ln(10) =
ln(2) + ln(5). La seconde équation est équivalente, toujours en utilisant le logarithme, à x − y = ln(2/5) =
ln(2)− ln(5). Ainsi, le système est équivalent à{

x + y = ln(2) + ln(5)
x − y = ln(2)− ln(5)

On trouve alors facilement que le seul couple solution est x = ln(2), y = ln(5).

2. On résoud le système classiquement. On trouve qu’il est équivalent à{
ex = 3
ey = 4

Prenant le logarithme, on trouve un seul couple solution donné par x = ln(3) et y = ln(4).

3. Posons a = ex et b = ey. Le système est alors équivalent à{
5a − b = 19

ab = 30 ⇐⇒
{

ba − 19
a(5a − 19) = 30

La seconde équation est une équation du second degré : 5a2 − 19a − 30 = 0. Ces solutions sont a = −6/5 et
a = 5. Mais a doit être strictement positif, donc −6/5 ne convient pas. On a donc a = 5 et b = 6. La seule
solution du système est doncle couple x = ln(5) et y = ln(6).

Correction de l’exercice 3 N

1. La première limite donne une forme indéterminée ∞/∞. On lève lindétermination en factorisant par ex au
dénominateur :

ex

2ex + e−2x =
ex

ex (2 + e−3x)
=

1
2 + e−3x

Comme
lim

x→−∞
e−3x = 0

on en déduit que

lim
x→+∞

ex

2ex + e−2x =
1
2
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2. La deuxième limite n’est pas une forme indéterminée. En effet, on a

lim
x→−∞

ex = 0

et
lim

x→−∞
2ex + e−2x = +∞

On en déduit que

lim
x→−∞

ex

2ex + e−2x = 0

Correction de l’exercice 4 N

1. On factorise

exp(x)− x3 = exp(x)
(

1 − x3

exp(x)

)
Par le théorème de croissance comparée,

lim
x→+∞

x3

exp(x)
= 0

Par les théorèmes d’opérations sur les limites,

lim
x→+∞

(
1 − x3

exp(x)

)
= 1

puis

lim
x→+∞

exp(x)
(

1 − x3

exp(x)

)
= +∞

2. On factorise

ln(x)− x −
√

x = x
(

ln(x)
x

− 1 − 1√
x

)
Par le théorème de croissance comparée et les limites usuelles :

lim
x→+∞

ln(x)
x

= 0 et lim
x→+∞

1√
x
= 0

Par les théorèmes d’opérations sur les limites,

lim
x→+∞

(
ln(x)

x
− 1 − 1√

x

)
= −1

puis

lim
x→+∞

x
(

ln(x)
x

− 1 − 1√
x

)
= −∞
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3. On factorise le numérateur et le dénominateur :

x2 + 1
x + 1

=
x2
(

1 + 1
x2

)
x
(

1 + 1
x

) =
x
(

1 + 1
x2

)
1 + 1

x

Or, par les limites usuelles et les opérations sur les limites,

lim
x→+∞

(
1 +

1
x2

)
= 1, lim

x→+∞

(
1 +

1
x

)
= 1

lim
x→+∞

x
(

1 +
1
x2

)
= +∞

puis

lim
x→+∞

x
(

1 + 1
x2

)
1 + 1

x
= +∞

4. On factorise le numérateur et le dénominateur :

7x + ln(x)
7x + exp(x)

=
x
(

7 + ln(x)
x

)
exp(x)

(
7x

exp(x) + 1
) =

x
exp(x)

×
7 + ln(x)

x
7x

exp(x) + 1

Par le théorème de croissance comparée et les opérations sur les limites,

lim
x→+∞

(
7 +

ln(x)
x

)
= 7, lim

x→+∞

(
7x

exp(x)
+ 1
)
= 1

d’où

lim
x→+∞

7 + ln(x)
x

7x
exp(x) + 1

= 7

Puisque
lim

x→+∞

x
exp(x)

= 0

on en déduit que

lim
x→+∞

7x + ln(x)
7x + exp(x)

= 0

5. On pose u =
√

3x de sorte que si x → +∞, alors u → +∞. De plus, x = u2

3 . On a alors

ln(x)
exp(

√
3x)

=
ln
(

u2

3

)
exp(u)

=
ln
(
u2)− ln(3)
exp(u)

=
2 ln(u)− ln(3)

exp(u)

= 2
ln(u)

exp(u)
− ln(3)

exp(u)

Finalement,

lim
x→+∞

ln(x)
exp(

√
3x)

= lim
u→+∞

(
2

ln(u)
exp(u)

− ln(3)
exp(u)

)
= 0
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6. On écrit

x exp
(

1
x
− 1
)
= x exp

(
1
x

)
exp(−1)

puis on pose u = 1/x de sorte que si x → 0+alors u → +∞. On a alors

x exp
(

1
x
− 1
)
= x exp

(
1
x

)
exp(−1)

=
1
u

exp(u) exp(−1)

= exp(−1)× exp(u)
u

Ainsi,

lim
x→0+

x exp
(

1
x
− 1
)
= lim

u→+∞
exp(−1)× exp(u)

u
= +∞

7. On écrit

√
x + 2 −

√
x + 7 =

(
√

x + 2 −
√

x + 7)(
√

x + 2 +
√

x + 7)√
x + 2 +

√
x + 7

=
(x + 2)− (x + 7)√

x + 2 +
√

x + 7

=
−5√

x + 2 +
√

x + 7

Puisque
lim

x→+∞

√
x + 2 = +∞

et que
lim

x→+∞

√
x + 7 = +∞

on a
lim

x→+∞
(
√

x + 2 +
√

x + 7) = +∞

Finalement,

lim
x→+∞

(
√

x + 2 −
√

x + 7) = 0

Correction de l’exercice 5 N

1. f ′(x) = 12x2 − 6x + 1.

2. Je pose u(x) = 4x − 1 et v(x) = 7x + 2, ce qui donne u′(x) = 4 et v′(x) = 7, j’applique la formule(u
v

)′
=

u′v − uv′

v2

et j ’obtiens :

f ′(x) =
4(7x + 2)− (4x − 1)× 7

(7x + 2)2 =
15

(7x + 2)2

Remarque : vous avez le droit d’écrire directement la deuxième ligne.

3. Je pose u(x) = x et v(x) = x2 − 3, ce qui donne u′(x) = 1 et v′(x) = 2x et j’obtiens :

f ′(x) =
1
(
x2 − 3

)
− x × 2x

(x2 − 3)2 =
−x2 − 3

(x2 − 3)2
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4. f ′(x) = 6 × 1
2
√

x = 3√
x .

5. La dérivée de x 7→ cos(2x) est x 7→ −2 sin(2x), donc f ′(x) = 4 cos x − 2 sin(2x).

6. Je pose u(x) = −2x + 5, donc u′(x) = −2 et j′ applique (cos u)′ = −u′ sin u, donc f ′(x) = 2 sin(−2x + 5).

7. Je pose u(x) = x2, donc u′(x) = 2x et j’applique (sin u)′ = u′ cos u, donc f ′(x) = 2x cos
(
x2).

8. Je pose u(x) = sin x, donc u′(x) = cos x et j’applique (un)′ = nu′un−1 avec n = 2, donc f ′(x) =
2 cos x sin x. Et puisque je connais quelques formules de trigo : f ′(x) = 2 cos x sin x = sin(2x).

9. f (x) = tan x =
sin x
cos x

, on a donc :

f ′(x) =
cos x cos x − sin x(− sin x)

cos2 x
=

cos2 x + sin2 x
cos2 x

=
1

cos2 x

Remarque : on peut aussi l’écrire sous la forme : f ′(x) =
cos2 x + sin2 x

cos2 x
= 1 + tan2 x.

10. J’applique (un)′ = nu′un−1 : f ′(x) = 4 × 2 × (2x − 5)3 = 8(2x − 5)3.

11. J’applique :
(

1
u

)′
= − u′

u2 , donc f ′(x) = 7 ×
(
− 2x

(x2−9)2

)
= − 14x

(x2−9)2 .

12. J’applique (
√

u)′ = u′

2
√

u , donc f ′(x) = 8x
2
√

4x2−3
= 4x√

4x2−3
.

13. J’applique les deux formules précédentes et :

f ′(x) = −
2x

2
√

x2+2(√
x2 + 2

)2 = − x
(x2 + 2)

√
x2 + 2

14. Je pose u(x) = 4x−1
x+2 , que je dérive : u′(x) = 4(x+2)−(4x−1)

(x+2)2 = 9
(x+2)2 , puis j’applique (un)′ = nu′un−1, donc

f ′(x) = 3 × 9
(x+2)2 ×

(
4x−1
x+2

)2
= 27(4x−1)2

(x+2)4 .

15. f ′(x) = ln(x)

16. f ′(x) = −1
x

17. f ′(x) = 1
2x

18. f ′(x) = 2 ln(x)
x

19. f ′(x) = 2
x

20. f ′(x) = (2x + 3) exp
(

x2 + 3x − 1
)

21. f ′(x) = −ex/2

x2

22. f ′(x) = ex+ex

23. f ′(x) = e
√

x− 1
2 (ln(x) + 2)

Correction de l’exercice 6 N

1. Puisque cos x ≥ −1 pour tout x ∈ R, on a 2 + cos x > 0. Le dénominateur ne s’annule pas, et f est définie
sur R tout entier. Comme quotient de deux fonctions dérivables dont le dénominateur ne s’annule pas, f est
dérivable sur R.
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2. On a

f (x + 2π) =
sin(x + 2π)

2 + cos(x + 2π)
=

sin x
2 + cos x

= f (x)

puisque sin et cos sont 2π-périodiques. De plus, on a

f (−x) =
sin(−x)

2 + cos(−x)
=

− sin(x)
2 + cos x

= − f (x)

La fonction f est donc impaire. La courbe représentative de f est donc symétrique par rapport à l’origine
du repère. De plus, par 2π-périodicité, on peut limiter l’étude à un intervalle de longueur 2π puis déduire
la courbe représentative de f par des translations de vecteur (2π, 0). Il suffit donc d’étudier la fonction sur
[0, π], construire la courbe sur cet intervalle, l’obtenir sur [−π, π] par symétrie par rapport à O, puis sur R

par périodicité.

3. En utilisant la formule de dérivabilité d’un quotient, on a

f ′(x) =
cos x(2 + cos x)− (− sin x)(sin x)

(2 + cos x)2 =
2 cos x + cos2 x + sin2 x

(2 + cos x)2 =
1 + 2 cos x
(2 + cos x)2

4. On a 1 + 2 cos x ≥ 0 ⇐⇒ cos x ≥ −1/2. En s’aidant du cerde trigonométrique, on trouve que cos x ≥ −1/2
sur [0, 2π/3] et cos x ≤ −1/2 sur[2π/3, π].

5. On en déduit le tableau de variations suivant :

x

f ′(x)

f (x)

0
2π

3
π

+ 0 −

00

√
3

3

√
3

3
00

6. On trouve la courbe suivante :

Correction de l’exercice 7 N

cf correction manuscrite.

Correction de l’exercice 8 N

1. La fonction est bien définie pour les réels x ̸= 1 tels que −1 ≤ 1+x
1−x ≤ 1. Or,

1 + x
1 − x

=
2 + x − 1

1 − x
=

2
1 − x

− 1

On en déduit que
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−1 ≤ 1 + x
1 − x

≤ 1 ⇐⇒ 0 ≤ 2
1 − x

≤ 2

Ceci impose d’abord que 1− x > 0 pour que l’inégalité de gauche soit vérifiée, c’est-à-dire x < 1. On en déduit
alors que l’inégalité est équivalente à 1 ≤ 1 − x soit x ≤ 0. Le domaine de définition de la fonction est donc
R−. Son domaine de dérivabilité est ]− ∞, 0[. En effet, par composition, f est dérivable en tout réel x ̸= 1 tel
que −1 < 1+x

1−x < 1 et l’étude précédente reste valable avec des inégalités strictes et non des inégalités larges.

2. Dérivons la fonction. Pour tout x < 0, on a

f ′(x) =
2

(1 − x)2 × 1√
1 − 1 − 4

(1−x)2 +
4

1−x

=
1

(1 − x)
√
−x

> 0

3. La fonction est donc strictement croissante sur ] − ∞, 0]. On aurait pu également retrouver ce résultat en
remarquant que la fonction x 7→ 1+x

1−x est croissante sur ] −∞, 0] et que la fonction arcsin est croissante sur
]− 1, 1[. Par composition de deux fonctions croissantes, f est croissante. Enfin, puisque

lim
x→−∞

1 + x
1 − x

= −1

on en déduit par composition que limx→−∞ f (x) = −π/2. La courbe représentative de la fonction admet une
asymptote horizontale d’équation y = −π/2.

4. On obtient la courbe représentative suivante :

Correction de l’exercice 9 N

La fonction Argch est définie sur [1,+∞[. Or

1
2

(
x +

1
x

)
≥ 1 ⇐⇒ x2 + 1

x
≥ 2

⇐⇒ x2 + 1 − 2x
x

≥ 0

⇐⇒ (x − 1)2

x
≥ 0

⇐⇒ x > 0

donc f est définie sur ]0,+∞[.

Soit x > 0, alors y = 1
2

(
x + 1

x

)
≥ 1 et on sait que

Argch(y) = ln(y +
√

y2 − 1)

Ainsi √
y2 − 1 =

√
1
4

(
x +

1
x

)2
− 1 =

√
(x2 + 1)2

4x2 − 1 =

√
(x2 − 1)2

4x2 =

∣∣∣∣ x2 − 1
2x

∣∣∣∣
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on obtient

f (x) = Argch(y = ln(y +
√

y2 − 1) = ln
(

x2 + 1
2x

+

∣∣∣∣ x2 − 1
2x

∣∣∣∣)
On a supposé x > 0, il suffit donc de distinguer les cas x ≥ 1 et 0 < x ≤ 1.

• Si x ≥ 1, f (x) = ln
(

x2 + 1
2x

+
x2 − 1

2x

)
= ln x.

• Si 0 < x ≤ 1, f (x) = ln
(

x2 + 1
2x

+
1 − x2

2x

)
= ln

1
x
= − ln x.

Puisque ln x est positif si x ≥ 1 et négatif si x ≤ 1, on obtient dans les deux cas f (x) = | ln x|.

x

y

f (x)

1

10

Correction de l’exercice 10 N

1. La fonction Argsh est définie sur R, de même que u(x) = 2x + 8e−x. On a donc D = R.

2. La dérivée de f est

f ′(x) =
2 − 8e−x√

(2x + 8e−x)2 + 1

3. On cherche

2 − 8e−x ≤ 0 ⇔ x ≤ ln(4)

Donc f ′(x) ≤ 0 pour x ≤ ln(4) et f (x) ≥ 0 pour x ≥ ln(4).
On peut donc affirmer que f est croissante sur [ln(4);+∞[ et décroissante sur ]− ∞; ln(4)]

4. On a donc
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Correction de l’exercice 11 N

1. En utilisant la dérivée de arctan et la dérivée d’une fonction du type g(ax), on trouve que

f ′(x) = a × 1
1 + a2x2

2. Posons g(x) = 1
4+x2 . On va se ramener à la question précédente en remarquant que

g(x) =
1

4 (1 + x2/4)
=

1
4
× 1

1 +
(

1
2

)2
x2

=
1
2
× 1

2
× 1

1 +
(

1
2

)2
x2

=
1
2
× f ′(x)

en choisissant a = 1/2. Une primitive de g est donc la fonction

G(x) =
1
2

f (x) =
1
2

Arctan
( x

2

)

Correction de l’exercice 12 N

1. Pour tout x ∈ R

0 ≤ cos4(x) ≤ 1 ⇔ −2 ≤ −2 cos4(x) ≤ 0 ⇔ −1 ≤ 1 − 2 cos4(x) ≤ 1

Donc f est définie et continue sur R en tant que composée de fonctions définies et continues sur R.

2.
f (x) = Arcsin

(
1 − 2 cos4(x + 2π)

)
= Arcsin

(
1 − 2 cos4(x)

)
= f (x)

Donc f est 2π périodique.
Remarque : en fait f est même π-périodique.

f (−x) = Arcsin
(

1 − 2 cos4(−x)
)
= Arcsin

(
1 − 2 cos4(x)

)
= f (x)

Donc f est paire. Par conséquent on étudiera f sur I = [0, π].

3. On pose u(x) = 1 − 2 cos4(x), on a donc

f ′(x) =
u′(x)√

1 − (u(x))2

or
u′(x) = 8 cos3(x) sin(x)

et

1 − (u(x))2 = 1 −
(

1 − 2 cos4(x)
)2

= 1 −
(

1 − 4 cos4(x) + 4 cos8(x)
)

= 4 cos4(x)− 4 cos8(x)

= 4 cos4(x)
(

1 − cos4(x)
)

= 4 cos4(x)
(

1 − cos2(x)
) (

1 + cos2(x)
)

= 4 cos4(x) sin2(x)
(

1 + cos2(x)
)
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On a donc

f ′(x) =
8 cos3(x) sin(x)√

4 cos4(x) sin2(x) (1 + cos2(x))

=
8 cos3(x) sin(x)

2 cos2(x)| sin(x)|
√

1 + cos2(x)

=
8 cos(x) sin(x)

2| sin(x)|
√

1 + cos2(x)

Il y aura évidemment un problème en 0+et en π−. Et sur ]0, π[, on a sin(x) > 0 donc | sin(x)| = sin(x).
Finalement pour tout x ∈]0, π[

f ′(x) =
4 cos(x)√
1 + cos2(x)

4. Sur ]0, π[, sin(x) > 0 et pour tout x ∈ I, sin(x) = 0 ⇔ x = 0 ou x = π D’après l’expression

f ′(x) =
4 cos(x)√
1 + cos2(x)

f ′(x) a le même signe que cos(x), c’est-à-dire strictement positif sur ]0, π
2 [ et strictement négatif sur ]π

2 , π[

f (0) = Arcsin
(

1 − 2 cos4(0)
)
= Arcsin(−1) = −π

2

f
(π

2

)
= Arcsin

(
1 − 2 cos4

(π

2

))
= Arcsin(1) =

π

2

f (π) = Arcsin
(

1 − 2 cos4(π)
)
= Arcsin(−1) = −π

2

Donc f est strictement croissante sur
[
0, π

2
]

et strictement décroissante sur
[

π
2 , π

]
.

5. On a donc
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Correction de l’exercice 13 N

1. f (0) = 2 Arctan
(√

1 + 02 − 0
)
+ Arctan(0) = 2 Arctan(1) = 2 × π

4
=

π

2

2. On a

f ′(x) = 2 ×
2x

2
√

1+x2 − 1

1 +
(√

1 + x2 − x
)2 +

1
1 + x2

= 2 ×
x−

√
1+x2√

1+x2

1 +
(

1 + x2 − 2x
√

1 + x2 + x2
) +

1
1 + x2

= 2 × x −
√

1 + x2
√

1 + x2
(

2 + 2x2 − 2x
√

1 + x2
) +

1
1 + x2

=
x −

√
1 + x2

√
1 + x2

(
1 + x2 − x

√
1 + x2

) +
1

1 + x2

=
x −

√
1 + x2

√
1 + x2

√
1 + x2

(√
1 + x2 − x

) +
1

1 + x2

= − 1
1 + x2 +

1
1 + x2 = 0

3. Sur R on a
f (x) = K

avec K une constante. Or f (0) =
π

2
donc

f (x) =
π

2

Correction de l’exercice 14 N

1. Pour tout x ∈ R, on a ch(x) ≥ 1 donc

0 <
1

ch(x)
≤ 1

par conséquent f est définie et continue sur R.

2. Si f (x) = Arcsin(u(x)) alors

f ′(x) =
u′(x)√

1 − (u(x))2

avec u(x) = 1
ch(x) . On a

u′(x) = − sh(x)
ch2(x)

de plus √
1 −

(
1

ch(x)

)2
=

√
ch2(x)− 1

ch2(x)
=

√
sh2(x)
ch2(x)

=
| sh(x)|
| ch(x)| =

| sh(x)|
ch(x)

car ch(x) > 0. Donc

f ′(x) = − sh(x)
ch2(x)

× ch(x)
| sh(x)| =

sh(x)
| sh(x)| ×

−1
ch(x)
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f n’est pas dérivable en 0. f est dérivable sur R∗. C’est une manière rapide de dire que pour que f soit dérivable
en un point, il faut et il suffit que f soit continue en ce point et que f ′ existe, ici, pour que f soit dérivable, il
faut et il suffit que f ′ existe (car f est définie sur R ) et que manifestement la limite à gauche et à droite de
0 n ’est pas la même. Donc le raisonnement suivant : f est dérivable si et seulement si

−1 <
1

ch(x)
< 1 ⇔ x ̸= 0

n’est pas correct.

3. g′(x) = ex

1+e2x

4. Si x > 0 alors sh(x) > 0 et donc

f ′(x) = − 1
ch(x)

= − 2
ex + e−x = − 2ex

e2x + 1
= −2g′(x)

Sur l’intervalle ]0,+∞[,
f (x) = −2g(x) + K

donc
lim

x→+∞
f (x) = Arcsin(0) = 0

et
lim

x→+∞
g(x) = lim

x→+∞
Arctan(X) =

π

2
Donc

K = π

Et

∀x > 0, Arcsin
(

1
ch(x)

)
= −2 Arctan (ex) + π

Correction de l’exercice 15 N

On pose, pour x ≥ 0,

f (x) = x − ln(1 + x).

Alors f est dérivable sur R+et, pour tout x ≥ 0, on a

f ′(x) = 1 − 1
1 + x

=
x

x + 1
≥ 0

Ainsi, la fonction f est croissante sur l’intervalle [0,+∞[. De plus, f (0) = 0, donc, pour tout x ≥ 0, on a f (x) ≥ 0
ce qui entraîne ln(1 + x) ≤ x. Pour démontrer l’autre inégalité, on introduit cette fois la fonction g définie sur
[0,+∞[ par

g(x) = ln(1 + x)− x +
x2

2
g est dérivable sur R+et pour tout x ≥ 0, on a

g′(x) =
1

1 + x
− 1 + x =

x2

1 + x
≥ 0

g est donc croissante sur R+et g(0) ≥ 0, donc pour tout x ≥ 0,

g(x) ≥ 0 ⇐⇒ x − x2

2
≤ ln(1 + x).

Correction de l’exercice 16 N

34 - 45



1. La fonction f est définie partout où le dénominateur ne s’annule pas, c’est-à-dire pour tout les x avec sin x ̸=
−1. Le domaine de définition de f est donc

D = R\
{
−π

2
+ 2kπ; k ∈ Z

}
2. La foncttion f n’est ni paire, ni impaire, elle est par contre 2π périodique. On a

I =
[
−π,−π

2

[
∪
]
−π

2
, π
]

Un intervalle d’amplitude 2π est suffisant pour avoir une répétition complete de la courbe de f .

3. On a sin(π − x) = sin x. On en déduit que f (π − x) = f (x). Ceci signifie que la droite d’équation x = π/2
est un axe de symétrie pour la courbe de f . On peut donc se restreindre à l’intervalle

J =
]
−π

2
,

π

2

]
4. On a

lim
x→+ π

2

f (x) =
1
2

de plus
lim

x→− π
2

1 + sin(x) = 0+

donc
lim

x→− π
2

f (x) = −∞

5. On a

f ′(x) =
cos(x)

(1 + sin(x))2

6. Donc on trouve que f est croissante sur
]
−π

2 , π
2
]

7. On a

Correction de l’exercice 17 N

1. f est paire et 2π périodique, on étudie f sur [0, π]

2. f ′(x) = 2 cos(x) sin(x)− 1
2 sin(x) = 2 sin(x)

(
cos(x)− 1

4

)
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∀x ∈ [0, π], f ′(x) = 0 ⇔
{

sin(x) = 0
cos(x) = 1

4

Il y a deux valeurs qui annulent sin(x) dans [0, π], ce sont 0 et π.
Pour x ∈ [0, π] cos(x) = 1

4 équivaut à x = Arccos
(

1
4

)
, la fonction cos étant décroissante sur [0, π] le signe de

cos(x)− 1
4 est positif sur

[
0, Arccos

(
1
4

)]
et négatif sur

[
Arccos

(
1
4

)
, π
]
.

x 0 Arccos
(

1
4

)
π

sin(x) 0 + + 0
cos(x)− 1

4 + 0 -
f ′(x) 0 + 0 - 0

f est croissante sur
[
0, Arccos

(
1
4

)]
f est décroissante sur

[
Arccos

(
1
4

)
, π
]

3.

f (0) =
1
2

f
(

Arccos
(
−1

4

))
= sin2

(
Arccos

(
1
4

))
+

1
2

cos
(

Arccos
(

1
4

))
= 1 − cos2

(
Arccos

(
1
4

))
+

1
2
× 1

4

= 1 − 1
16

+
1
8
=

16 − 1 + 2
16

=
17
16

f (π) = −1
2

x 0 Arccos
(

1
4

)
π

f ′(x) 0 + 0 - 0
f (x) ↗ 17

16
1
2 − 1

2

Correction de l’exercice 18 N

1.
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f (x + 2π) =
1
3

cos(3(x + 2π))− 3
4

cos(2(x + 2π)) =
1
3

cos(3x + 6π)− 3
4

cos(2x + 4π)

=
1
3

cos(3x)− 3
4

cos(2x) = f (x)

f est 2π périodique.

f (−x) =
1
3

cos(−3x)− 3
4

cos(−2x) =
1
3

cos(3x)− 3
4

cos(2x) = f (x)

f est paire (et 2π périodique) donc on étudie f sur [0, π].
2.

cos(3x) + i sin(3x) = e3ix =
(

eix
)3

= (cos(x) + i sin(x))3

= cos3(x) + 3i cos2(x) sin(x)− 3 cos(x) sin2(x)− i sin3(x)

= cos3(x)− 3 cos(x) sin2(x) + i
(

3 cos2(x) sin(x)− sin3(x)
)

Voir cours pour plus de détails. Puis on égalise les parties réelle et imaginaire

cos(3x) = cos3(x)− 3 cos(x) sin2(x)

sin(3x) = 3 cos2(x) sin(x)− sin3(x)
sin(2x) = 2 sin(x) cos(x)

C’est une formule connue.
3.

f ′(x) = − sin(3x) +
3
2

sin(2x) = −
(

3 cos2(x) sin(x)− sin3(x)
)
+ 3 sin(x) cos(x)

= sin(x)
(
−3 cos2(x) + sin2(x) + 3 cos(x)

)
= sin(x)

(
−3 cos2(x) + 1 − cos2(x) + 3 cos(x)

)
= sin(x)

(
−4 cos2(x) + 3 cos(x) + 1

)
Soit P le polynôme P = −4X2 + 3X + 1, il admet 1 et − 1

4 comme racine. On déduit que

P = −4(X − 1)
(

X +
1
4

)
Et que

−4 cos2(x) + 3 cos(x) + 1 = −4(cos(x)− 1)
(

cos(x) +
1
4

)
Et la dérivée vaut

f ′(x) = −4 sin(x)(cos(x)− 1)
(

cos(x) +
1
4

)
La fonction cos étant décroissante sur [0, π], cos(x)+ 1

4 est positif sur
[
0, Arccos

(
− 1

4

)]
et négatif sur

[
Arccos

(
− 1

4

)
, π
]
.

Faisons un tableau de signe pour trouver le signe de f ′(x) selon les valeurs de x ∈ [0, π]

x 0 x0 π
sin(x) 0 + + 0
cos(x)− 1 0 - -
cos(x) + 1

4 + 0 -

sin(x)(cos(x)− 1)
(

cos(x) + 1
4

)
0 - 0 + 0

f ′(x) 0 + 0 - 0
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f est croissante sur
[
0, Arccos

(
− 1

4

)]
et décroissante sur

[
Arccos

(
− 1

4

)
, π
]

4.

f (0) =
1
3

cos(0)− 3
4

cos(0) = − 5
12

f (π) =
1
3

cos(3π)− 3
4

cos(2π) = −1
3
− 3

4
= −13

12

f (x) =
1
3

cos(3x)− 3
4

cos(2x) =
1
3

(
cos3(x)− 3 cos(x) sin2(x)

)
− 3

4

(
2 cos2(x)− 1

)
=

1
3

(
cos3(x)− 3 cos(x)

(
1 − cos2(x)

)
− 3

4

(
2 cos2(x)− 1

)
=

4
3

cos3(x)− 3
2

cos2(x)− cos(x) +
3
4

Sachant que cos (x0) = − 1
4

f (x0) =
4
3

cos3 (x0)−
3
2

cos2 (x0)− cos (x0) +
3
4
=

4
3

(
−1

4

)3
− 3

2

(
−1

4

)2
+

1
4
+

3
4
= − 1

48
− 3

32
+ 1

=
−2 − 9 + 96

96
=

85
96

5.

x 0 x0 π
f ′(x) 0 + 0 - 0
f (x) ↗ 85

96
− 5

12 v− 13
12

Correction de l’exercice 19 N

1. f ′(x) = 4 − 5 cos(x)
f ′(x) = 0 ⇔ x = Arccos

(
4
5

)
car x ∈ [0, π], cos est une fonction décroissante donc

Si x ∈
[
0, Arccos

(
4
5

)
[, f ′(x) < 0 et f est décroissante.

Si x ∈]Arccos
(

4
5

)
, π
]

, f ′(x) > 0 et f est croissante.

2. 1√
2
< 4

5 <
√

3
2 , c’est trivial en élevant au carré. Comme arccos est une fonction décroissante :

Arccos
(

1√
2

)
> Arccos

(
4
5

)
> Arccos

(√
3

2

)
⇔ π

4
> Arccos

(
4
5

)
>

π

6

3.
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x 0 Arccos
(

4
5

)
π

f ′(x) - 0 +
f (x) 0

4 Arccos
(

4
5

)
− 3

f
(

Arccos
(

4
5

))
= 4 Arccos

(
4
5

)
− 5 sin

(
Arccos

(
4
5

))
= 4 Arccos

(
4
5

)
− 5

√
1 −

(
4
5

)2
= 4 Arccos

(
4
5

)
− 3

4. f est impaire donc la courbe est symétrique par rapport à l’origine.

Correction de l’exercice 20 N

1. Ces trois nombres sont positifs, ces deux inégalités équivalent à

(
1
2

)2
<

(
2
3

)2
<

(√
2

2

)2

⇔ 1
4
<

4
9
<

1
2

Ce qui est vrai.
2. arcsin est strictement croissante donc

Arcsin
(

1
2

)
< Arcsin

(
2
3

)
< Arcsin

(√
2

2

)
⇔ π

6
< Arcsin

(
2
3

)
<

π

4

3.

f ′(x) = − sin(x) +
2
3

f ′(x) = 0 ⇔ sin(x) =
2
3

Dans l’intervalle
[
0, π

2
]

f ′(x) = 0 admet une unique solution x = Arcsin
( 2

3
)

Comme arcsin est strictement croissante,
∀x ∈

[
0, Arcsin

( 2
3
)
[, f ′(x) > 0 donc f est strictement croissante

∀x ∈]Arcsin
( 2

3
)

, π
2
]

, f ′(x) < 0 donc f est strictement décroissante

π

6
< Arcsin

(
2
3

)
<

π

4
⇔ 2

3
× π

6
<

2
3

Arcsin
(

2
3

)
<

2
3
× π

4
⇔ π

9
<

2
3

Arcsin
(

2
3

)
<

π

6

Comme
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cos
(

Arcsin
(

2
3

))
=

√
1 −

(
2
3

)2
=

√
9 − 4

32 =

√
5

3

Et que

f
(

Arcsin
(

2
3

))
= cos

(
Arcsin

(
2
3

))
+

2
3

π

9
+

√
5

3
< f

(
Arcsin

(
2
3

))
<

π

6
+

√
5

3

4.

Correction de l’exercice 21 N

1. f est définie et continue si et seulement

{ √
1 − x2 ∈ [−1, 1]

1 − x2 ≥ 0
⇔
{

1 − (
√

1 − x2)2 ≥ 0
x2 ≤ 1

⇔
{

1 − (1 − x2) ≥ 0
x ∈ [−1, 1] ⇔

{
x2 ≥ 0

x ∈ [−1, 1] ⇔ x ∈ [−1, 1]

2.

f ′(x) =
− 2x

2
√

1−x2√
1 − (1 − x2)

= − x√
1 − x2

× 1√
x2

= − x
|x|

√
1 − x2

3.
Il y a deux demi-tangentes verticales
Pour x < 0, |x| = −x et

f ′(x) =
1√

1 − x2

lim
x→−1+

f ′(x) = +∞

Il y a une demi-tangente verticale
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lim
x→0−

f ′(x) = 1

Il y a une demi-tangente oblique
Pour x > 0, |x| = x et

f ′(x) =
−1√

1 − x2

lim
x→0+

f ′(x) = −1

Il y a une demi-tangente oblique

lim
x→1−

f ′(x) = −∞

Il y a une demi-tangente verticale
4. Si x ∈ [0, 1] la fonction est croissante, si x ∈ [0, 1] la fonction est décroissante.
5.

x -1 0 1
f ′(x) ∥+ ∞ +1∥ − 1 - −∞
f (x) −→ π

2
0 −→ 0

Correction de l’exercice 22 N

1. Pour tout x ∈ R

0 ≤ cos4(x) ≤ 1 ⇔ −2 ≤ −2 cos4(x) ≤ 0 ⇔ −1 ≤ 1 − 2 cos4(x) ≤ 1

Donc f est définie et continue sur R en tant que composée de fonctions définies et continues sur R.
2.
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f (x) = Arcsin
(

1 − 2 cos4(x + 2π)
)
= Arcsin

(
1 − 2 cos4(x)

)
= f (x)

Donc f est 2π périodique.
Remarque : en fait f est même π-périodique.

f (−x) = Arcsin
(

1 − 2 cos4(−x)
)
= Arcsin

(
1 − 2 cos4(x)

)
= f (x)

Donc f est paire.
Par conséquent on étudiera f sur I = [0, π].
3. On pose u(x) = 1 − 2 cos4(x)

f ′(x) =
u′(x)√

1 − (u(x))2

u′(x) = 8 cos3(x) sin(x)

1 − (u(x))2 = 1 −
(

1 − 2 cos4(x)
)2

= 1 −
(

1 − 4 cos4(x) + 4 cos8(x)
)
= 4 cos4(x)− 4 cos8(x)

= 4 cos4(x)
(

1 − cos4(x)
)
= 4 cos4(x)

(
1 − cos2(x)

) (
1 + cos2(x)

)
= 4 cos4(x) sin2(x)

(
1 + cos2(x)

)
f ′(x) =

8 cos3(x) sin(x)√
4 cos4(x) sin2(x) (1 + cos2(x))

=
8 cos3(x) sin(x)

2 cos2(x)| sin(x)|
√

1 + cos2(x)

=
8 cos(x) sin(x)

2| sin(x)|
√

1 + cos2(x)

Il y aura évidemment un problème en 0+et en π−. Et sur ]0, π[, sin(x) > 0 donc | sin(x)| = sin(x) Finalement pour
tout x ∈]0, π[

f ′(x) =
4 cos(x)√
1 + cos2(x)

4.

f ′(x) =
4 cos(x)√
1 + cos2(x)

−→
x→0+

4√
1 + 12

=
4√
2
= 2

√
2

f ′(x) =
4 cos(x)√
1 + cos2(x)

−−−→
x→π−

−4√
1 + 12

= − 4√
2
= −2

√
2

Pour toutes les autres valeurs de I, f est dérivable, par conséquent f est dérivable sur ]0, π[.
5. Sur ]0, π[, sin(x) > 0 et pour tout x ∈ I, sin(x) = 0 ⇔ x = 0 ou x = π
D’après l’expression

f ′(x) =
4 cos(x)√
1 + cos2(x)

f ′(x) a le même signe que cos(x), c’est-à-dire strictement positif sur ]0, π
2 [ et strictement négatif sur ]π

2 , π[.

f (0) = Arcsin
(

1 − 2 cos4(0)
)
= Arcsin(−1) = −π

2

f
(π

2

)
= Arcsin

(
1 − 2 cos4

(π

2

))
= Arcsin(1) =

π

2

f (π) = Arcsin
(

1 − 2 cos4(π)
)
= Arcsin(−1) = −π

2

x 0 π
2 π

f ′(x) + 0 -
f (x) → π

−π
2
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Wolfram|Alpha est un moteur de recherche scientifique, une superbe
calculatrice à tout faire. Disponible sur le navigateur mais également
sur mobile avec une application téléchargeable sur Google Play et l’App
Store.

Etudiez en musique !
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