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Résumé

Les polynômes sont des objets mathématiques très simples mais aux propriétés extrêmement riches. Vous
savez déjà résoudre les équations de degré 2 : aX2 + bX + c = 0. Savez-vous que la résolution des équations de
degré 3, aX3 + bX2 + cX + d = 0, a fait l’objet de luttes acharnées dans l’Italie du xvie siècle ?

Dans ce chapitre, après quelques définitions des concepts de base, nous allons étudier la division euclidienne
des polynômes. On continuera avec un théorème fondamental de l’algèbre : « Tout polynôme de degré n admet
n racines complexes. » On terminera avec les fractions rationnelles : une fraction rationnelle est le quotient de
deux polynômes.
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1 Définitions

Définition 1.
Un polynôme à coefficients dans R est une expression de la forme

P(X) = anXn + an−1Xn−1 + · · ·+ a2X2 + a1X + a0,

avec n ∈ N et a0, a1, . . . , an ∈ R. L’ensemble des polynômes est noté R[X].

• Les ai sont appelés les coefficients du polynôme

• Si tous les coefficients ai sont nuls, P est appelé le polynôme nul, il est noté 0

• On appelle le degré de P le plus grand entier i tel que ai ̸= 0. On le note deg(P). Pour le degré du polynôme
nul on pose par convention deg(0) = −∞

• Un polynôme de la forme P = a0 avec a0 ∈ R est appelé un polynôme constant. Si a0 ̸= 0, son degré est
égale à 0.

Exemple 1.
Le polynôme X3 − 5X + 4 est un polynôme de degré 3. L’expression Xn + 1 est un polynôme de degré n. De la
même façon, d’après la définition, 2 est un polynôme constant, de degré 0.
Soient

P = anXn + an−1Xn−1 + · · ·+ a1X + a0 et Q = bnXn + bn−1Xn−1 + · · ·+ b1X + b0.

• Égalité. Dire que P et Q sont égaux revient à dire que leur coeefficents sont deux à deux égaux, c’est à dire

P = Q ⇐⇒ ∀i ai = bi

• Addition. On peut écrire

P + Q = (an + bn)Xn + (an−1 + bn−1)Xn−1 + · · ·+ (a1 + b1)X + (a0 + b0)

• Multiplication. On a
P × Q = crXr + cr−1Xr−1 + · · ·+ c1X + c0

avec r = n + m et ck = ∑
i+j=k

aibj pour k ∈ {0, . . . , r}.

• Multiplication par un scalaire. Si λ ∈ R alors λ · P est le polynôme dont le i-ème coefficient est λai, c’est
à dire λP = λanXn + λan−1Xn−1 + · · ·+ λa1X + λa0

Un proposition utile sur les degrés, avec les opérations présentées ci-dessus, est la suivante.

Proposition 1.
Soient P et Q deux polynômes à coefficients dans R.

deg(P × Q) = deg(P) + deg(Q) et deg(P + Q) ≤ max(deg(P), deg Q)

Définition 2.
On note R[X] l’ensemble des polynômes à coefficients réelles et Rn[X] l’ensemble des polynômes à coefficients
réelles de degrés inférieurs ou égale à n, c’est à dire

Rn[X] = {P ∈ R[X] | deg(P) ≤ n} .

Proposition 2.
Si P, Q ∈ Rn[X] alors P + Q ∈ Rn[X].
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Exemple 2.
Soient P = 2x2 + 5x + 6 et Q = x2 + 1. On a P et Q élément de R2[X]. On peut alors facilement vérifier que
P + Q ∈ R2[X].
Complétons les définitions sur les polynômes.

Définition 3.

• Les polynômes comportant un seul terme non nul (du type akXk) sont appelés monômes.

• Soit
P = anXn + an−1Xn−1 + · · ·+ a1X + a0

un polynôme avec an ̸= 0. On appelle terme dominant le monôme anXn. Le coefficient an est appelé le
coefficient dominant de P.

• Si le coefficient dominant est 1, on dit que P est un polynôme unitaire.

Exemple 3.
On considère le polynôme suivant

P(X) = (X − 1)(Xn + Xn−1 + · · ·+ X + 1).

On développe cette expression :

P(X) =
(
Xn+1 + Xn + · · ·+ X2 + X

)
−

(
Xn + Xn−1 + · · ·+ X + 1

)
= Xn+1 − 1.

P(X) est donc un polynôme de degré n + 1, il est unitaire et est somme de deux monômes : Xn+1 et −1.

Remarque.
Tout polynôme est donc une somme finie de monômes.

2 Division euclidienne

Définition 4.
Soient A, B ∈ R[X], on dit que B divise A s’il existe Q ∈ R[X] tel que A = BQ. On note alors B|A.

Remarque.
On dit aussi que A est multiple de B ou que A est divisible par B.
Outre les propriétés évidentes comme A|A, 1|A et A|0 nous avons les résultats suivants.

Proposition 3.
Soient A, B, C ∈ R[X].

■ Si A|B et B|A, alors il existe λ ∈ R∗ tel que A = λB.

■ Si A|B et B|C alors A|C.

■ Si C|A et C|B alors C|(AU + BV), pour tout U, V ∈ R[X].

Théorème 1 (Division euclidienne des polynômes).
Soient A, B ∈ R[X], avec B ̸= 0, alors il existe un unique polynôme Q et il existe un unique polynôme R tels
que :

A = BQ + R et deg(R) < deg(B)

Q est appelé le quotient, R le reste et cette écriture est la division euclidienne de A par B. Notez que la condition
deg(R) < deg(B) signifie R = 0 ou bien 0 ≤ deg(R) < deg(B). Enfin R = 0 si et seulement si B|A.
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Exemple 4.
Effectuons la division euclidienne de A = 2X4 + X3 + X2 + X + 1 par B = X2 + X + 2

2X4 + X3 + X2 + X + 1 X2 + X + 2
2X4 + 2X3 + 4X2 2X2 − X − 2

−X3 − 3X2 + X + 1
−X3 − X2 − 2X

−2X2 + 3X + 1
−2X2 − 2X − 4

5X + 5

Ici on a donc Q = 2X2 − X − 2 et R = 5X + 5. On peut alors écrire

2X4 + X3 + X2 + X + 1 =
(

X2 + X + 2
) (

2X2 − X − 2
)
+ 5X + 5

3 Racine d’un polynôme, factorisation

3.1 Racines d’un polynôme

Définition 5.
Soit P = anXn + an−1Xn−1 + · · ·+ a1X + a0 ∈ R[X]. Pour un élément x ∈ R, on note

P(x) = anxn + · · ·+ a1x + a0.

On associe ainsi au polynôme P une fonction polynôme (que l’on note encore P)

P :
{

R → R

x 7→ P(x) = anxn + · · ·+ a1x + a0

Soit α ∈ K. On dit que α est une racine (ou un zéro) de P si P(α) = 0.

Proposition 4.

P(α) = 0 ⇐⇒ X − α divise P

Définition 6.
Soit k ∈ N∗. On dit que α est une racine de multiplicité k de P si (X − α)k divise P alors que (X − α)k+1 ne
divise pas P.

Lorsque k = 1 on parle d’une racine simple, lorsque k = 2 d’une racine double, etc. On dit aussi que α est une racine
d’ordre k.

Proposition 5.
Il y a équivalence entre les trois propositions suivantes.

(i) α est une racine de multiplicité k de P.

(ii) Il existe Q ∈ R[X] tel que P = (X − α)kQ, avec Q(α) ̸= 0.

(iii) P(α) = P′(α) = · · · = P(k−1)(α) = 0 et P(k)(α) ̸= 0.

Remarque.
Par analogie avec la dérivée d’une fonction, si

P(X) = a0 + a1X + · · ·+ anXn ∈ R[X]

alors le polynôme
P′(X) = a1 + 2a2X + · · ·+ nanXn−1

est le polynôme dérivé de P.
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3.2 Théorème de d’Alembert-Gauss

Théorème 2 (Théorème de d’Alembert-Gauss).
Tout polynôme à coefficients complexes de degré n ≥ 1 a au moins une racine dans C. Il admet exactement n
racines si on compte chaque racine avec multiplicité.

Exemple 5.
Soit P(X) = aX2 + bX + c un polynôme de degré 2 à coefficients réels : a, b, c ∈ R et a ̸= 0.

• Si ∆ = b2 − 4ac > 0 alors P admet 2 racines réelles distinctes −b+
√

∆
2a et −b−

√
∆

2a .

• Si ∆ < 0 alors P admet 2 racines complexes distinctes −b+i
√

|∆|
2a et −b−i

√
|∆|

2a .

• Si ∆ = 0 alors P admet une racine réelle double −b
2a .

En tenant compte des multiplicités on a donc toujours exactement 2 racines.

Exemple 6.
Soit

P(X) = 3X3 − 2X2 + 6X − 4.

considéré comme un polynôme à coefficients dans R. P n’a qu’une seule racine (qui est simple) α = 2
3 et il se

décompose comme suit

P(X) = 3
(

X − 2
3

)(
X2 + 2

)
.

Si on considère maintenant P comme un polynôme à coefficients dans C alors

P(X) = 3
(

X − 2
3

)(
X − i

√
2
) (

X + i
√

2
)

et admet 3 racines simples.

3.3 Polynômes irréductibles

Définition 7.
Soit P ∈ R[X] un polynôme de degré ≥ 1, on dit que P est irréductible si pour tout Q ∈ R[X] divisant P, alors,
soit Q ∈ R∗, soit il existe λ ∈ R∗ tel que Q = λP.

Remarque.
• Un polynôme irréductible P est donc un polynôme non constant dont les seuls diviseurs de P sont les constantes

ou P lui-même (à une constante multiplicative près).

• Dans le cas contraire, on dit que P est réductible. Il existe alors des polynômes A, B de R[X] tels que P = AB,
avec deg(A) ≥ 1 et deg(B) ≥ 1.

Exemple 7.
• Tous les polynômes de degré 1 sont irréductibles. Par conséquent il y a une infinité de polynômes irréductibles.

• X2 − 1 = (X − 1)(X + 1) ∈ R[X] est réductible.

• X2 + 1 = (X − i)(X + i) est réductible dans C[X] mais est irréductible dans R[X].

Théorème 3 (Théorème de factorisation).
Tout polynôme non constant A ∈ K[X] s’écrit comme un produit de polynômes irréductibles unitaires :

A = λPk1
1 Pk2

2 · · · Pkr
r

où λ ∈ K∗, r ∈ N∗, ki ∈ N∗ et les Pi sont des polynômes irréductibles distincts.
De plus cette décomposition est unique à l’ordre près des facteurs.

3.4 Factorisation dans C[X] et R[X]
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Théorème 4.
Les polynômes irréductibles de C[X] sont les polynômes de degré 1. Donc pour P ∈ C[X] de degré n ≥ 1 la
factorisation s’écrit

P = λ(X − α1)
k1(X − α2)

k2 · · · (X − αr)
kr

où α1, ..., αr sont les racines distinctes de P et k1, ..., kr sont leurs multiplicités.

Théorème 5.
Les polynômes irréductibles de R[X] sont les polynômes de degré 1 ainsi que les polynômes de degré 2 ayant un
discriminant ∆ < 0. Soit P ∈ R[X] de degré n ≥ 1. Alors la factorisation s’écrit

P = λ(X − α1)
k1(X − α2)

k2 · · · (X − αr)
kr Qℓ1

1 · · · Qℓs
s

où les αi sont exactement les racines réelles distinctes de multiplicité ki et les Qi sont des polynômes irréductibles
de degré 2 : Qi = X2 + βiX + γi avec ∆ = β2

i − 4γi < 0.

Exemple 8.
P(X) = 2X4(X − 1)3(X2 + 1)2(X2 + X + 1) est déjà décomposé en facteurs irréductibles dans R[X] alors que sa
décomposition dans C[X] est P(X) = 2X4(X − 1)3(X − i)2(X + i)2(X − j)(X − j2) où j = e

2iπ
3 = −1+i

√
3

2 .

Exemple 9.
Soit P(X) = X4 + 1.

• Sur C. On peut d’abord décomposer P(X) = (X2 + i)(X2 − i). Les racines de P sont donc les racines carrées
complexes de i et −i. Ainsi P se factorise dans C[X] :

P(X) =
(
X −

√
2

2 (1 + i)
)(

X +
√

2
2 (1 + i)

)(
X −

√
2

2 (1 − i)
)(

X +
√

2
2 (1 − i)

)
.

• Sur R. Pour un polynôme à coefficient réels, si α est une racine alors ᾱ aussi. Dans la décomposition ci-dessus
on regroupe les facteurs ayant des racines conjuguées, cela doit conduire à un polynôme réel :

P(X) =
[(

X −
√

2
2 (1 + i)

)(
X −

√
2

2 (1 − i)
)] [(

X +
√

2
2 (1 + i)

)(
X +

√
2

2 (1 − i)
)]

=
[
X2 +

√
2X + 1

][
X2 −

√
2X + 1

]
,

qui est la factorisation dans R[X].

4 Fractions rationnelles

Définition 8.
Une fraction rationnelle à coefficients dans K est une expression de la forme

F =
P
Q

où P, Q ∈ R[X] sont deux polynômes et Q ̸= 0.

Toute fraction rationnelle se décompose comme une somme de fractions rationnelles élémentaires que l’on appelle
des « éléments simples ». Mais les éléments simples sont différents sur C ou sur R.

Théorème 6 (Décomposition en éléments simples sur C).
Soit P/Q une fraction rationnelle avec P, Q ∈ C[X], et Q = (X − α1)

k1 · · · (X − αr)kr . Alors il existe une et une
seule écriture :

P
Q

= E +
a1,1

(X − α1)k1
+

a1,2

(X − α1)k1−1 + · · ·+
a1,k1

(X − α1)

+
a2,1

(X − α2)k2
+ · · ·+

a2,k2

(X − α2)

+ · · ·
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Le polynôme E s’appelle la partie polynomiale (ou partie entière). Les termes
a

(X − α)i sont les éléments simples sur

C.
Exemple 10.

• Vérifier que
1

X2 + 1
=

a
X + i

+
b

X − i

avec a = 1
2 i, b = − 1

2 i.

• Vérifier que
X4 − 8X2 + 9X − 7
(X − 2)2(X + 3)

= X + 1 +
−1

(X − 2)2 +
2

X − 2
+

−1
X + 3

.

Méthode : Comment se calcule cette décomposition ?
En général on commence par déterminer la partie polynomiale,

• Si deg(Q) > deg(P) alors E(X) = 0

• Si deg(P) ≤ deg(Q) alors effectuons la division euclidienne de P par Q. On obtient

P = QE + R donc
P
Q

= E +
R
Q

où deg(R) < deg(Q).

La partie polynomiale est donc le quotient de cette division. Et on est alors ramené au cas d’une fraction
R
Q

avec deg(R) < deg(Q).

Voyons en détails comment continuer sur un exemple.

Exemple 11.
Décomposons la fraction

P
Q

=
X5 − 2X3 + 4X2 − 8X + 11

X3 − 3X + 2
.

• Première étape : partie polynomiale. On calcule la division euclidienne de P par Q

P(X) = (X2 + 1)Q(X) + 2X2 − 5X + 9.

Donc la partie polynomiale est E(X) = X2 + 1 et la fraction s’écrit

P(X)

Q(X)
= X2 + 1 +

2X2 − 5X + 9
Q(X)

.

Notons que pour la fraction 2X2−5X+9
Q(X)

le degré du numérateur est strictement plus petit que le degré du
dénominateur.

• Deuxième étape : factorisation du dénominateur. Q a pour racine évidente +1 (racine double) et −2
(racine simple) et se factorise donc ainsi

Q(X) = (X − 1)2(X + 2)

• Troisième étape : décomposition théorique en éléments simples. Le théorème de décomposition en élé-
ments simples nous dit qu’il existe une unique décomposition :

P(X)

Q(X)
= E(X) +

a
(X − 1)2 +

b
X − 1

+
c

X + 2

Nous savons déjà que E(X) = X2 + 1, il reste à trouver les nombres a, b, c.
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• Quatrième étape : détermination des coefficients. Voici une première façon de déterminer a, b et c. On
écrit

a
(X − 1)2 +

b
X − 1

+
c

X + 2
=

2X2 − 5X + 9
Q(X)

On développe et par identification termes à termes on peut déterminer les coefficients a, b et c.

a
(X − 1)2 +

b
X − 1

+
c

X + 2
=

(b + c)X2 + (a + b − 2c)X + 2a − 2b + c
(X − 1)2(X + 2)

=
2X2 − 5X + 9

Q(X)

On en déduit b + c = 2, a + b − 2c = −5 et 2a − 2b + c = 9. Cela conduit à l’unique solution a = 2, b = −1,
c = 3. Donc

P
Q

=
X5 − 2X3 + 4X2 − 8X + 11

X3 − 3X + 2
= X2 + 1 +

2
(X − 1)2 +

−1
X − 1

+
3

X + 2
.

Cette méthode est souvent la plus longue.

• Quatrième étape (bis) : détermination des coefficients. Voici une autre méthode plus efficace.

On note

F(X) =
2X2 − 5X + 9

(X − 1)2(X + 2)

On a alors
F(X) =

a
(X − 1)2 +

b
X − 1

+
c

X + 2

Pour déterminer a on multiplie la fraction F par (X − 1)2 et on évalue en X = 1.

Tout d’abord en partant de la décomposition on a :

F1(X) = (X − 1)2F(X) = a + b(X − 1) + c
(X − 1)2

X + 2
donc F1(1) = a

D’autre part

F1(X) = (X − 1)2 2X2 − 5X + 9
(X − 1)2(X + 2)

=
2X2 − 5X + 9

X + 2

donc F1(1) = 2. On en déduit a = 2.

On fait le même processus pour déterminer c. On multiplie par (X + 2) et on évalue en X = −2.

F2(X) = (X + 2)
2X2 − 5X + 9

(X − 1)2(X + 2)
=

2X2 − 5X + 9
(X − 1)2 = a

X + 2
(X − 1)2 + b

X + 2
X − 1

+ c

On obtient d’une part F2(−2) = c et d’autre part F2(−2) = 3. Ainsi c = 3.

Pour déterminer b on peut réécrire

2X2 − 5X + 9
(X − 1)2(X + 2)

=
a

(X − 1)2 +
b

X − 1
+

c
X + 2

en X = 0, on obtient
9
2
= a − b +

c
2

Donc b = a + c
2 − 9

2 = −1.

Théorème 7 (Décomposition en éléments simples sur R).
Soit P/Q une fraction rationnelle avec P, Q ∈ R[X]. Alors P/Q s’écrit de manière unique comme somme :

• d’une partie polynomiale E(X),

• d’éléments simples du type a
(X−α)i ,
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• d’éléments simples du type aX+b
(X2+αX+β)i .

Où les X − α et X2 + αX + β sont les facteurs irréductibles de Q(X) et les exposants i sont inférieurs ou égaux
à la puissance correspondante dans cette factorisation.

Exemple 12.
Décomposition en éléments simples de

P(X)

Q(X)
=

3X4 + 5X3 + 11X2 + 5X + 3
(X2 + X + 1)2(X − 1)

.

Comme deg(P) < deg(Q) alors E(X) = 0. Le dénominateur est déjà factorisé sur R car X2 + X + 1 est irréductible.
La décomposition est donc

P(X)

Q(X)
=

aX + b
(X2 + X + 1)2 +

cX + d
X2 + X + 1

+
e

X − 1
.

Il faut ensuite mener au mieux les calculs pour déterminer les coefficients afin d’obtenir :

P(X)

Q(X)
=

2X + 1
(X2 + X + 1)2 +

−1
X2 + X + 1

+
3

X − 1
.

5 Exercices

Vous pouvez continuer à vous exercer sur votre espace jai20enmaths,
où vous y retrouverez des notions de cours ainsi que des exercices
corrigés. Si vous remarquez une erreur ou avez une suggestion pour
que cet espace de travail soit plus agréable à utiliser, ne surtout pas
hésiter à me le signaler par mail à a.gere@istom.fr.

Exercice 1
Pour chacun des polynômes suivants, donner son coefficient dominant ainsi que son degré.

1. P0 = 1 +
√

3X − 2X2

2. P1 = X7 + 4X8 + (1 − i)X3

3. P2 = 3X
(
1 + X2)+ 2X3 − 1

4. P3 = (i + X)
(
1 + 3X2 − iX

)

5. P4 =
4

∑
k=1

(k! + 1)Xk

6. P5 =
(
3X − 7X2 + 4

)′
7. P6 = [X(X + 1)(X + 2)(X + 3)(X + 4)]′

8. P7 = (1 − Xn) (1 + X)2 + Xn+2, n ≥ 0

Indication H Correction H [15.0000]

Exercice 2
Soient a, b des réels, et

P(X) = X4 + 2aX3 + bX2 + 2X + 1.

Pour quelles valeurs de a et b le polynôme P est-il le carré d’un polynôme de R[X] ?

Indication H Correction H [15.0001]

Exercice 3
Résoudre les équations suivantes, où l’inconnue est un polynôme P de R[X] :
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1. P
(
X2) = (

X2 + 1
)

P(X) 2. (P′) = 4P 3. P ◦ P = P

Indication H Correction H [15.0002]

Exercice 4
Calculer le quotient et le reste de la division eudidienne de

1. X4 + 5X3 + 12X2 + 19X − 7 par X2 + 3X − 1

2. X4 − 4X3 − 9X2 + 27X + 38parX2 − X − 7

3. X5 − X2 + 2 par X2 + 1

Indication H Correction H [15.0003]

Exercice 5
Soit A(X) = X6 − X4 + 2X3 − X + 1 et B(X) = X2 − 2X + 2.

1. Effectuer la division eudidienne de A par B.

2. En déduire la valeur de A(1 + i).

Indication H Correction H [15.0004]

Exercice 6
Dterminer l’ordre de multiplicité de la racine 1 du polynôme

A(X) = X5 − 5X4 + 14X3 − 22X2 + 17X − 5

Indication H Correction H [15.0005]

Exercice 7
Factoriser dans R[X] et C[X] les polynômes suivants :

Q0 = X2 + 1 Q1 = X2 − 3X − 4 Q2 = X2 − 2X + 2 Q3 = X3 − 8

Indication H Correction H [15.0006]

Exercice 8
Soit P et Q les deux polynômes définis par P(X) = 2X3 + 5x − 1 et Q(X) = −X2 + 3X. Déterminer chacun des
polynômes suivants :

1. P + Q

2. PQ

3. P2(X)

4. P
(
X2) 5. P ◦ Q

6. Q ◦ P

7. 3P3Q − Q ◦ P2

Indication H Correction H [15.0007]

Exercice 9
Déterminer tous les polynômes réels vérifiant chacune des conditions suivantes :
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1. P(1) = 0 et P(2) = 0

2. P(1) = 1 et P(2) = 2

3. XP′ = P

4.
(
X2 + 1

)
P′′ = 6P

5. P(0) = 00 ; P(1) = 1 ; P′(0) = 2 et P′(1) = 3.

Indication H Correction H [15.0008]

Exercice 10
Soit P(X) = X3 − 2X2 − 5X + 6.

1. Déterminer une racine évidente du polynôme P.

2. Factoriser P sous la forme (X + 2)Q(X), où Q est un polynôme de degré 2 .

3. En déduire le tableau de signe de P sur R.

4. Résoudre les inéquations

(ln x)3 − 2(ln x)2 − 5 ln x + 6 > 0 et e2x − 2ex 6 5 − 6e−x

Indication H Correction H [15.0009]

Exercice 11
Décomposer les fractions suivantes en éléments simples sur R.

1. F =
X

X2 − 4

2. G =
X3 − 3X2 + X − 4

X − 1

3. H =
2X3 + X2 − X + 1

X2 − 2X + 1

4. K =
X + 1
X4 + 1

Indication H Correction H [15.0010]

Exercice 12
Décomposer les fractions suivantes en éléments simples sur R.

1. F =
X5 + X4 + 1

X3 − X

2. G =
X3 + X + 1

(X − 1)3(X + 1)

3. H =
X

(X2 + 1)(X2 + 4)

4. K =
2X4 + X3 + 3X2 − 6X + 1

2X3 − X2

Indication H Correction H [15.0011]

Exercice 13
Effectuer la décomposition en éléments simples dans C[X] des fractions rationnelles suivantes :

1.
X2 + 2X + 5
X2 − 3X + 2

2.
X2 + 1

(X − 1)(X − 2)(X − 3)

3.
1

X(X − 1)2

4.
2X

X2 + 1
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5.
1

X2 + X + 1

6.
4

(X2 + 1)2

7.
3X − 1

X2(X + 1)2

8.
1

X4 + X2 + 1

Indication H Correction H [15.0012]
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Indication pour l’exercice 1 N

coming.

Indication pour l’exercice 2 N

coming.

Indication pour l’exercice 3 N

Déterminer d’abord le degré éventuel d’une solution.

Indication pour l’exercice 4 N

coming.

Indication pour l’exercice 5 N

coming.

Indication pour l’exercice 6 N

Calculer A(1), A′(1), . . .

Indication pour l’exercice 7 N

coming.

Indication pour l’exercice 8 N

coming.

Indication pour l’exercice 9 N

coming.

Indication pour l’exercice 10 N

Indication pour l’exercice 11 N

Pour G et H, commencer par faire une division euclidienne pour trouver la partie polynomiale.

Indication pour l’exercice 12 N

Les fractions F, K ont une partie polynomiale, elles s’écrivent
F = X2 + X + 1 + X2+X+1

X3−X

K = X + 1 + 4X2−6X+1
2X3−X2

Indication pour l’exercice 13 N

coming.

13 - 24



14 - 24



Correction de l’exercice 1 N

1. P0 a pour degré 2 et coefficient dominant −2.

2. P1 = 4X8 + X7 + (1 − i)X3 et a pour degré 8 et coefficient dominant 4.

3. P2 = 5X3 + 3X − 1 et a pour degré 3 et coefficient dominant 5.

4. P3 est le produit d’un polynôme de degré 1 à coefficient dominant 1, avec un polynôme de degré 2 à coefficient
dominant 3, P3 est donc de degré 3 et à coefficient dominant 3.

5. P4 est de degré 4 et à coefficient dominant (4! + 1), c’est-à-dire 25.

6. P5 = −14X + 3 est de degré 1 et à coefficient dominant −14. C’est en fait le polynôme dérivé d’un polynôme
de degré 2 à coefficient dominant −7.

7. Le polynôme X(X + 1)(X + 2)(X + 3)(X + 4) est de degré 5 et unitaire (c’est-à-dire de coefficient dominant
1) ; P6 est son polynôme dérivé, il est donc de degré 4, et de coefficient dominant 5.

8. P7 = (1 − Xn) (1 + X)2 + Xn+2 = 1 + 2X + X2 − Xn − 2Xn+1.

• si n = 0, P7 = X2 ; il est de degré 2, de coefficient dominant 1 ;

• si n = 1, P7 = 1 + X − X2 ; il est de degré 2, de coefficient dominant −1 ;

• si n ≥ 2, alors n + 1 ≥ 3 donc P7 est de degré (n + 1), de coefficient dominant −2 .

Correction de l’exercice 2 N

Si P = Q2 est le carré d’un polynôme, alors Q est nécessairement de degré 2 , et son coefficient dominant est égal
à 1 ou est égal à -1 . Dans le premier cas, on peut donc écrire Q(X) = X2 + cX + d. On a alors

Q2(X) = X4 + 2cX3 +
(

2d + c2
)

X2 + 2cdX + d2

Par identification, on doit avoir 2c = 2a, 2d + c2 = b, 2cd = 2 et d2 = 1. On trouve donc c = a et d = ±1. Si d = 1,
alors c = 1, et donc a = 1 et b = 3. Si d = −1, alors c = −1, a = −1 et b = −1. Les deux solutions sont donc

P1(X) = X4 + 2X3 + 3X2 + 2X + 1 =
(

X2 + X + 1
)2

P2(X) = X4 − 2X3 − X2 + 2X + 1 =
(

X2 − X − 1
)2

Dans le deuxième cas, on écrit Q(X) = −R(X) avec R(X) = X2 + cX + d, de sorte que Q2(X) = R2(X) et on
retrouve en réalité le cas précédent.

Correction de l’exercice 3 N

1. Le polynôme nul est évidemment solution. Sinon, si P est solution, alors on a

2 deg(P) = deg(P) + 2

ce qui prouve que deg(P) doit être égal à 2. Maintenant, si P(X) = aX2 + bX + c, alors

P
(

X2
)
= aX4 + bX2 + c(

X2 + 1
)

P(X) = aX4 + bX3 + (a + c)X2 + bX + c

On en déduit que b = 0, puis que a + c = 0. Les solutions sont donc les polynômes qui s’écrivent P(X) =
a
(
X2 − 1

)
, a ∈ R.
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2. Là encore, le polynôme nul est solution, et c’est la seule solution constante. Par ailleurs, si P est une solution
non constante, alors son degré vérifie l’équation

2(deg(P)− 1) = deg(P)

ce qui entraîne que deg(P) = 2. Maintenant, si P(X) = aX2 + bX + c, alors

P′2 = (2aX + b)2 = 4a2X2 + 4abX + b2

4P = 4aX2 + 4bX + 4c

Ceci entraîne a2 = a, donc a = 1 (le polynôme est de degré 2, a ̸= 0 ), puis c = b2/4. Les polynômes solutions
sont donc le polynôme nul et les polynômes P(X) = X2 + bX + b2/4, avec b ∈ R.

3. Si P est une solution qui n’est pas le polynôme nul, alors le degré de P ◦ P vaut deg(P)2, et donc on a l’équation

deg(P)2 = deg(P)

et donc deg(P) = 1 ou deg(P) = 0. Maintenant, si P(X) = aX + b, alors

P ◦ P(X) = a(aX + b) + b = a2X + (ab + b)
P(X) = aX + b

On doit donc avoir a2 = a, soit a = 1 ou a = 0, et a = 0. Si a = 1, alors b = 0 et si a = 0, alors b peut
être quelconque dans R. Finalement, on trouve que les solutions sont les polynômes constants et le polynôme
P(X) = X.

Correction de l’exercice 4 N

On trouve les résultats suivants :

1. Le quotient est X2 + 2X + 7, le reste est nul ;

2. Le quotient est X2 − 3X − 5, le reste est X + 3 ;

3. Le quotient est X3 − X − 1, le reste est X + 3.

Correction de l’exercice 5 N

1. On trouve A(X) =
(
X4 + 2X3 + X2 − 2

)
B(X)− 5X + 5.

2. On vérifie facilement que

B(1 + i) = (1 + i)2 − 2(1 + i) + 2 = 0.

On en déduit que

A(1 + i) = −5(1 + i) + 5 = −5i.

Correction de l’exercice 6 N

On a
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A′(X) = 5X4 − 20X3 + 42X2 − 44X + 17

A′′(X) = 20X3 − 60X2 + 84X − 44

A(3)(X) = 60X2 − 120X + 84

de sorte que A(1) = A′(1) = A′′(1) = 0 et A(3)(1) = 24 ̸= 0 donc 1 est racine de A de multiplicité 3.

Correction de l’exercice 7 N

1. Q0 est un polynôme de degré 2 qui n’a pas de racine réelle donc il est irréductible sur R. Il a deux racines
complexes qui sont i et −i. Une factorisation dans C[X] est par exemple

Q0 = (X − i)(X + i)

2. Le discriminant de Q1 vaut 25.Q1 admet donc deux racines réelles, 3+5
2 et 3−5

2 soit respectivement 4 et -1 .
On peut donc factoriser Q1 de la façon suivante à la fois dans R[X] et C[X]

Q1 = (X − 4)(X + 1).

3. Ici le discriminant de Q2 vaut : (−2)2 − 4(1)(2) = −4 = (2i)2. Q2 est donc irréductible sur R. Ses deux
racines complexes sont donc 2+2i

2 et 2−2i
2 soient respectivement 1 + i et 1 − i. On peut donc factoriser Q2 de

la façon suivante dans C[X] :
Q2 = (X − 1 − i)(X − 1 + i).

4. Pour Q3 la méthode diffère un peu. On commence par observer que 2 est racine évidente (il est à noter que Q3
étant de degré impair dans R[X] implique que Q3 a une racine réelle). On effectue ensuite la division eudidienne
de Q3 par X − 2 ce qui permet de le mettre sous forme de produit d’un polynôme de degré 1 et un de degré 2
puis d’étudier la factorisation de ce dernier avec les mêmes outils que ceux utilisés pour les polynômes Q0, Q1
et Q2. On trouve X3 − 8 = (X − 2)

(
X2 + 2X + 4

)
. En effet :

X3 − 8 X − 2
X3 − 2X2 X2 + 2X + 4

2X2 − 8
2X2 − 4X
4X − 8
4X − 8

0

Le discriminant de X2 + 2X + 4 vaut −12 = (2
√

3i)2 donc ce polynôme est irréductible sur R et on peut
factoriser Q3 dans R[X] par : Q3 = (X − 2)

(
X2 + 2X + 4

)
. On déduit une factorisation de Q3 dans C[X] en

calculant les deux racines complexes de X2 + 2X + 4 :

Q3 = (X − 2)(X + 1 + i
√

3)(X + 1 − i
√

3).

Correction de l’exercice 8 N

On obtient plus ou moins péniblement :

• P + Q = 2X3 − X2 + 8X − 1

• PQ = −2X5 + 6X4 − 5X3 + 16X2 − 3X

• P2 =
(
2X3 + 5X − 1

)2
= 4X6 + 25X2 + 1 + 20X4 − 4X3 − 10X = 4X6 + 20X4 − 4X3 + 25X2− 10X + 1
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• P
(
X2) = 2

(
X2)3

+ 5
(
X2)− 1 = 2X6 + 5X2 − 1

• P ◦ Q = 2
(
−X2 + 3X

)3
+ 5

(
−X2 + 3X

)
− 1 = −2X6 + 18X5 − 54X4 + 54X3 − 5X2 + 15X − 1

• Q ◦ P = −
(
2X3 + 5X − 1

)2
+ 3

(
2X3 + 5X − 1

)
= −

(
4X6 + 20X4 − 4X3 + 25X2 − 10X + 1

)
+ 6X3 +

15X − 3 = −4X6 − 20X4 + 10X3 − 25X2 + 25X − 4

• 3P3Q−Q ◦ P2 = 3
(
2X3 + 5X − 1

)3 (−X2 + 3X
)
+
(
4X6 + 20X4 − 4X3 + 25X2 − 10X + 1

)2 − 3
(
4X6 + 20X4 − 4X3 + 25X2 − 10X + 1

)
=

(
8X9 + 125X3 − 1 + 60X7 + 150X5 − 12X6 + 6X3 − 75X2 + 15X − 60X4) (−3X2 + 9X

)
+

(
16X12 + 400X8 + 16X6 + 625X4 + 100X2 + 1 + 160X10 − 32X9 + 200X8 − 80X7 + 8X6−

160X7 + 1000X6 − 400X5 + 40X4 − 200X5 + 80X4 − 8X3 − 500X3 + 50X2 − 20X
)
− 12X6− 60X4 + 12X3 −

75X2 + 30X− 3 =
(
8X9 + 60X7 − 12X6 + 150X5 − 60X4 + 131X3 − 75X2 + 15X − 1

) (
−3X2 + 9X

)
+ 16X12+

160X10 − 32X9 + 600X8 − 240X7 + 1012X6 − 600X5 + 685X4 − 496X3 + 75X2 + 10X− 2 =
(
−24X11 + 72X10 − 180X9 + 540X8 + 36X8 − 108X7 − 450X7 + 1350X6 + 180X6 − 540X5−

393X5 + 1179X4 + 225X4 − 675X3 − 45X3 + 135X2 + 3X2 − 9X
)
+ 16X12 + 160X10 − 32X9+ 600X8 − 240X7 +

1012X6 − 600X5 + 685X4 − 496X3 + 75X2 + 10X − 2 = 16X12 − 24X11 + 232X10 − 212X9 + 1176X8 −
798X7 + 2542X6 − 1533X5 + 2089X4− 1216X3 + 213X2 + X − 2 Merci la machine !

Correction de l’exercice 9 N

1. Le polynôme P est donc factorisable par X − 1 et par X − 2, c’est-à-dire que P = (X − 1)(X− 2) Q, avec
Q ∈ R[X].

2. Il suffit de constater que les deux conditions données reviennent à dire que P(X)− X vérifie les conditions de la
question 1. Autrement dit, on a P(X)− X = (X − 1)(X − 2)Q(X), soit P(X) = X + (X − 1)(X − 2)Q(X),
avec toujours Q(X) ∈ R[X].

3. Si P(X) = ∑k=n
k=0 akXk, on aura P′(X) = ∑k=n

k=1 kakXk−1, donc XP′(X) = ∑k=n
k=1 kakXk. Par identification, on

aura XP′ = P si a0 = 0 et, ∀k ∈ {1; . . . ; n}, ak = kak. Autrement dit, a1 peut valoir n’importe quoi, mais tous
les autres coefficients doivent être nuls. Celà revient à dire que P est de la forme P = aX, avec a ∈ R.

4. Constatons pour commencer que le polynôme nul et solution de l’équation proposée. Intéressonsnous ensuite
au degré d’un polynôme P vérifiant la condition demandée : si le terme dominant de P est de la forme
anXn (avec an ̸= 0 ), alors celui de P′′ sera n(n − 1)anXn−2, donc celui de

(
X2 + 1

)
P′′ sera égal à n(n −

1)anXn (tous les autres termes étant de degré inférieur). L’égalité demandée implique donc en particulier
que n(n − 1)anXn = 6anXn, c’est-à-dire que n(n − 1) = 6, ou encore n2 − n − 6 = 0. Cette équation
du second degré a pour discriminant ∆ = 1 + 24 = 25, et admet deux solutions n1 = 1−5

2 = −2 et
n2 = 1+5

2 = 3. Le degré d’un polynôme pouvant difficilement être égal à -2 , notre P est donc de degré 3.
Autrement dit, P = aX3 + bX2 + cX + d, donc P′′ = 6aX + 2b, et

(
X2 + 1

)
P′′ = 6aX3 + 2bX2 + 6aX + 2b.

Par identification, les coefficients du polynôme P doivent vérifier 6a = 6a; 6b = 2b; 6c = 6a et 6d = 2b. On en
déduit que b = d = 0, et c = a, a pouvant valoir n’importe quoi. Autrement dit, P = a

(
X3 + X

)
, avec a ∈ R

5. On peut constater à l’aide des deux premières conditions, de façon similaire à ce que nous avions fait an 2, que
P(X)− X admet 0 et 1 pour racines, et peut donc s’écrire sous la forme X(X − 1)Q(X). Autrement dit, on a
P(X) = X + X(X − 1)Q(X). On en déduit que P′(X) = 1 + (X − 1)Q(X) + XQ(X) + X(X − 1)Q′(X) =
1 + (2X − 1)Q(X) + X(X − 1)Q′(X). Les deux dernières conditions peuvent alors s’exprimer sous la forme
P′(0) = 1− Q(0) = 2, et P′(1) = 1+ Q(1) = 3, donc Q(0) = −1 et Q(1) = 2. Le polynôme 3X − 1 prenant
respectivement les valeurs -1 en 0 et 2 en 1 , on peut constater que Q(X)− (3X − 1) a pour racines 0 et 1 ,
autrement dit que Q(X) = 3X − 1 + X(X − 1)R(X). En reprenant l’expression précédente de P, on obtient
donc P(X) = X + X(X − 1)(3X − 1 + X(X − 1)R(X)) = X +

(
X2 − X

)
(3X − 1) + X2(X − 1)2R(X) =

2X − 4X2 + 3X3 + X2(X − 1)2R(X), avec R ∈ R[X]. Une autre façon de voir les choses est de dire que
les conditions données imposent que le reste de la division euclidienne de P par X2(X − 1)2 soit égal à
2X − 4X2 + 3X3.

Correction de l’exercice 10 N
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1. Il y a une racine très évidente qui est 1 . On peut aussi constate (par exemple en jetant un oeil à l’énoncé de
la question suivante) que -2 est racine de P : P(−2) = −8 − 2 × 4 − 5 × (−2) + 6 = 0.

2. On peut donc factoriser P sous la forme P(X) = (X + 2)Q(X) = (X + 2)
(
aX2 + bX + c

)
= aX3 + (2a +

b)X2 + (2b + c)X + 2c. Par identification, on obtient a = 1; 2a + b = −2; 2b + c = −5 et 2c = 6, donc
a = 1; b = −4 et c = 3, soit P(X) = (X + 2)

(
X2 − 4X + 3

)
.

3. Le deuxième facteur a pour discriminant ∆ = 16 − 12 = 4 et pour racines x1 = 4−2
2 = 1 (tiens, on a retrouvé

notre autre racine évidente) et x2 = 4+2
2 = 3. On a donc P(X) = (X + 1)(X − 1)(X − 3), d’où le tableau de

signes suivant :

x -2 1 3
P(x) - 0 + 0 - 0 +

4. La première inéquation se ramène au tableau de signe précédent en posant X = ln x. On en déduit que
X ∈]− 2; 1[∪]3;+∞[, donc S =]e−2; e[∪]e3;+∞[. Pour la deuxième, on peut tout multiplier par ex (qui est
toujours strictement positif) et tout passer à gauche pour obtenir e3x − 2e2x − 5ex + 6 6 0, ce qui se ramène
encore une fois au tableau précédent en posant cette fois-ci X = ex (ce qui suppose donc X > 0 ). On obtient
X ∈ [1; 3] (on peut oublier l’autre intervalle puisque X > 0, soit S = [0; ln 3].

Correction de l’exercice 11 N

1. F = X
X2−4 .

Commençons par factoriser le dénominateur : X2 − 4 = (X − 2)(X + 2), d’où une décomposition en éléments
simples du type F = a

X−2 + b
X+2 . En réduisant au même dénominateur, il vient X

X2−4 = (a+b)X+2(a−b)
X2−4 et en

identifiant les coefficients, on obtient le système
{

a + b = 1
2(a − b) = 0 . Ainsi a = b = 1

2 et

X
X2 − 4

=
1
2

X − 2
+

1
2

X + 2

2. G = X3−3X2+X−4
X−1 .

Lorsque le degré du numérateur (ici 3) est supérieur ou égal au degré du dénominateur (ici 1), il faut effectuer
la division euclidienne du numérateur par le dénominateur pour faire apparaître la partie polynomiale (ou partie
entière). Ici la division euclidienne s’écrit X3 − 3X2 + X − 4 = (X − 1)(X2 − 2X − 1)− 5. Ainsi en divisant
les deux membres par X − 1 on obtient

X3 − 3X2 + X − 4
X − 1

= X2 − 2X − 1 − 5
X − 1

La fraction est alors déjà décomposée en éléments simples.

3. H = 2X3+X2−X+1
X2−2X+1 .

Commençons par faire la division euclidienne du numérateur par le dénominateur : 2X3 + X2 − X + 1 =
(X2 − 2X + 1)(2X + 5) + 7X − 4, ce qui donne H = 2X + 5 + 7X−4

X2−2X+1 . Il reste à décomposer en éléments

simples la fraction rationnelle H1 = 7X−4
X2−2X+1 . Puisque le dénominateur se factorise en (X − 1)2, elle sera

de la forme H1 = a
(X−1)2 + b

X−1 . En réduisant au même dénominateur, il vient 7X−4
X2−2X+1 = bX+a−b

X2−2X+1 et en
identifiant les coefficients, on obtient b = 7 et a = 3. Finalement,

2X3 + X2 − X + 1
X2 − 2X + 1

= 2X + 5 +
3

(X − 1)2 +
7

X − 1
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4. K = X+1
X4+1 .

Ici, il n’y a pas de partie polynomiale puisque le degré du numérateur est strictement inférieur au degré du
dénominateur. Le dénominateur admet quatre racines complexes e

iπ
4 , e

3iπ
4 , e

5iπ
4 = e−

3iπ
4 et e

7iπ
4 = e−

iπ
4 . En

regroupant les racines complexes conjuguées, on obtient sa factorisation sur R :

X4 + 1 =
(
(X − e

iπ
4 )(X − e−

iπ
4 )

)(
(X − e

3iπ
4 )(X − e−

3iπ
4 )

)
=

(
X2 − 2 cos π

4 + 1
)(

X2 − 2 cos 3π
4 + 1

)
= (X2 −

√
2X + 1)(X2 +

√
2X + 1)

Puisque les deux facteurs (X2 −
√

2X + 1) et (X2 +
√

2X + 1) sont irréductibles sur R, la décomposition en
éléments simples de K est de la forme K = aX+b

X2−
√

2X+1
+ cX+d

X2+
√

2X+1
.

En réduisant au même dénominateur et en identifiant les coefficients avec ceux de K = X+1
X4+1 , on obtient le

système 
a + c = 0√

2a + b −
√

2c + d = 0
a +

√
2b + c −

√
2d = 1

b + d = 1

Système que l’on résout en a = −
√

2
4 , c =

√
2

4 , b = 2+
√

2
4 et d = 2−

√
2

4 . Ainsi

X + 1
X4 + 1

=
−

√
2

4 X + 2+
√

2
4

X2 −
√

2X + 1
+

√
2

4 X + 2−
√

2
4

X2 +
√

2X + 1

Correction de l’exercice 12 N

1. F = X5+X4+1
X3−X .

Pour obtenir la partie polynomiale, on fait une division euclidienne : X5 + X4 + 1 = (X3 − X)(X2 + X + 1) +
X2 + X + 1. Ce qui donne F = X2 + X + 1 + F1, où F1 = X2+X+1

X3−X . Puisque X3 − X = X(X − 1)(X + 1), la
décomposition en éléments simples est de la forme

F1 =
X2 + X + 1

X(X − 1)(X + 1)
=

a
X

+
b

X − 1
+

c
X + 1

Pour obtenir a :

• on multiplie l’égalité par X : X(X2+X+1)
X(X−1)(X+1) = X

(
a
X + b

X−1 + c
X+1

)
,

• on simplifie X2+X+1
(X−1)(X+1) = a + bX

X−1 + cX
X+1 ,

• on remplace X par 0 et on obtient −1 = a + 0 + 0, donc a = −1.

De même, en multipliant par X − 1 et en remplaçant X par 1, il vient b = 3
2 . Puis en multipliant par X + 1 et

en remplaçant X par −1, on trouve c = 1
2 .

D’où
X5 + X4 + 1

X3 − X
= X2 + X + 1 − 1

X
+

1
2

X + 1
+

3
2

X − 1

2. G = X3+X+1
(X−1)3(X+1) .

La partie polynomiale est nulle. La décomposition en éléments simples est de la forme G = a
(X−1)3 +

b
(X−1)2 +

c
X−1 + d

X+1 .
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• En multipliant les deux membres de l’égalité par (X − 1)3, en simplifiant puis en remplaçant X par 1, on
obtient a = 3

2 .

• De même, en multipliant par X + 1, en simplifiant puis en remplaçant X par −1, on obtient d = 1
8 .

• En multipliant par X et en regardant la limite quand X → +∞, on obtient 1 = c + d. Donc c = 7
8 .

• En remplaçant X par 0, il vient −1 = −a + b − c + d. Donc b = 5
4 .

Ainsi :

G =
X3 + X + 1

(X − 1)3(X + 1)
=

3
2

(X − 1)3 +
5
4

(X − 1)2 +
7
8

X − 1
+

1
8

X + 1

3. H = X
(X2+1)(X2+4) .

Puisque X2 + 1 et X2 + 4 sont irréductibles sur R, la décomposition en éléments simples sera de la forme

X
(X2 + 1)(X2 + 4)

=
aX + b
X2 + 1

+
cX + d
X2 + 4

• En remplaçant X par 0, on obtient 0 = b + 1
4 d.

• En multipliant les deux membres par X, on obtient X2

(X2+1)(X2+4) = aX2+bX
X2+1 + cX2+dX

X2+4 . En calculant la
limite quand X → +∞, on a 0 = a + c.

• Enfin, en évaluant les fractions en X = 1 et X = −1, on obtient 1
10 = a+b

2 + c+d
5 et −1

10 = −a+b
2 + −c+d

5 .

La résolution du système donne b = d = 0, a = 1
3 , c = − 1

3 et donc

X
(X2 + 1)(X2 + 4)

=
1
3 X

X2 + 1
−

1
3 X

X2 + 4

4. K = 2X4+X3+3X2−6X+1
2X3−X2 .

Pour la partie polynomiale, on fait la division euclidienne :

2X4 + X3 + 3X2 − 6X + 1 = (2X3 − X2)(X + 1) + (4X2 − 6X + 1)

ce qui donne K = X + 1 + K1 où K1 = 4X2−6X+1
2X3−X2 . Pour trouver la décomposition en éléments simples de

K1, on factorise son numérateur : 2X3 − X2 = 2X2(X − 1
2 ), ce qui donne une décomposition de la forme

K1 = a
X2 +

b
X + c

X− 1
2
.

On obtient alors a en multipliant les deux membres de l’égalité par X2 puis en remplaçant X par 0 : a = −1.
On obtient de même c en multipliant par X − 1

2 et en remplaçant X par 1
2 : c = −2. Enfin on trouve b en

identifiant pour une valeur particulière non encore utilisée, par exemple X = 1, ou mieux en multipliant les
deux membres par X et en passant à la limite pour X → +∞ : b = 4. Finalement :

2X4 + X3 + 3X2 − 6X + 1
2X3 − X2 = X + 1 − 1

X2 +
4
X

− 2
X − 1

2

Correction de l’exercice 13 N

1. X2+2X+5
X2−3X+2 = 1 − 8

X−1 + 13
X−2

2. X2+1
(X−1)(X−2)(X−3) =

1
X−1 − 5

X−2 + 5
X−3
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3. 1
X(X−1)2 = 1

X + 1
(X−1)2 − 1

X−1

4. 2X
X2+1 = 1

X−i +
1

X+i

5. 1
X2+X+1 = − i/

√
3

X−j +
i/
√

3
X−j2

6. 4
(X2+1)2 = − 1

(X−i)2 − i
X−i −

1
(X+i)2 +

i
X+i

7. 3X−1
X2(X+1)2 = − 1

X2 +
5
X − 4

(X+1)2 − 5
(X+1)

8. 1
X4+X2+1 = (1−j)/6

X−j +
(1−j2)/6

X−j2 − (1−j)/6
X+j − (1−j2)/6

X+j2
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Wolfram|Alpha est un moteur de recherche scientifique, une superbe
calculatrice à tout faire. Disponible sur le navigateur mais également
sur mobile avec une application téléchargeable sur Google Play et l’App
Store.

Etudiez en musique !

23 - 24

https://www.wolframalpha.com/
https://play.google.com/store/apps/details?id=com.wolfram.android.alphapro&hl=en&pli=1
https://apps.apple.com/us/app/wolframalpha/id548861535
https://apps.apple.com/us/app/wolframalpha/id548861535
https://www.wolframalpha.com/
https://open.spotify.com/playlist/0KZGwpcrKkFicSRuAJ3CQ4?si=4670e9f1df6749e5
https://open.spotify.com/playlist/0KZGwpcrKkFicSRuAJ3CQ4?si=4670e9f1df6749e5
https://deezer.page.link/TxLR2fALBsRhxWnY9
https://deezer.page.link/TxLR2fALBsRhxWnY9


Étudiant(e) (Nom, Prénom) : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Promotion, groupe : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Email : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Auteurs de ces notes de cours

D’après un cours de Arnaud Bodin.
Revu et augmenté par Antoine Géré.
Cours et exercices rédigés par Antoine Géré.
Relu par (coming soon).

24 - 24

https://istom-my.sharepoint.com/:f:/g/personal/a_gere_istom_fr/EnrHozgcEzZBmbphD1ocFYQBfM30K_uNc9BHoYBXlGJm2Q?e=xqWoVM
mailto:arnaud.bodin@univ-lille.fr
mailto:a.gere@istom.fr
mailto:a.gere@istom.fr

	Définitions
	Division euclidienne
	Racine d'un polynôme, factorisation
	Racines d'un polynôme
	Théorème de d'Alembert-Gauss
	Polynômes irréductibles
	Factorisation dans C[X] et R[X]

	Fractions rationnelles
	Exercices

