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Ces notes sont en cours d'élaboration. Si vous avez la moindre question ou remarque ne pas hésiter
a contacter par mail : a.gere@istom.fr.

Résumé

Nous abordons ici le probléme de diagonalisation des matrices. Une matrice n'est pas en general diagonalisable,
c'est-a-dire semblable 3 une matrice diagonale. Nous allons énoncer des conditions qui déterminent exactement
quand une matrice est diagonalisable. Nous verrons quelques applications de cette procédure, ainsi que la méthode
de trigonalisation qui peut etre utile lorsque diagonaliser est impossible.
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Dans ce chapitre, E est un K-espace vectoriel. Ici K designera R ou C. Sauf mention contraire, E sera de dimension
finie. Un espace vectoriel est un ensemble d'objets, appelés vecteurs, que I'on peut additionner entre eux, et que |'on
peut multiplier par un scalaire (c’est a dire un nombre).
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1 Valeurs propres, vecteurs propres

1.1 Définitions

Voici deux transformations simples définies par une matrice.

()= 2) () =(5)

L'application & envoie n'importe quel vecteur ( ch ) sur son double 2 ( ; )

<) Gos)(6)=(5)

2
0
L’application k envoie les vecteurs du type ( ) sur leurs doubles 2 ( g ) alors que les vecteurs ( 2 )

] . 0
sont envoyés sur leurs triples 3 y )

Pour une matrice quelconque, il s’agit de voir comment on se raméne a ces situations géométriques simples. C'est
ce qui nous améne a la notion de vecteurs propres et valeurs propres.

Commencons par définir les valeurs et les vecteurs propres d'une application linéaire.

Définition 1 (Endomorphisme).
f : E — E est appelé un endomorphisme si f est une application linéaire de E dans lui-méme. Autrement dit,
pour tout v € E, f(v) € E et, en plus, pour tous u,v € E et tout v € K :

flu+o)=f(u)+f(v) et flav)=af(v)

Les deux transformations précédentes, & et k, sont des endomorphismes de M>1(IR). On peut ainsi donner la définition
suivante de valeurs propres, vecteurs propres de ce types d'applications.
Définissons la matrice d'une application linéaire.
Définition 2.
La matrice de 'application linéaire f par rapport aux bases? BB et 3’ est la matrice de M1p(K) dont la j-éme
colonne est constituée par les coordonnées du vecteur f(e;) dans la base B’ = (f1, f2,..., fu). On écrit

fler) oo fle) oo flep)

fi ar L A 5 1)
fz an azj e azp
fu \ am Apj oo Anp

2Dire que cette famille de vecteurs est une base signifie que tout vecteurs de I'espace vectoriel (ici IRS), s'exprime de maniére
unique comme combinaison linéaire des éléments de cette base. Par exemple dans le cas de R3 une base possible est la base habituelle

(Z7.F).

En termes plus simples : c’est la matrice dont les vecteurs colonnes sont I'image par f des vecteurs de la base de
départ B, exprimée dans la base d'arrivée B'.
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Exemple 1.
Soit f I'application linéaire de R3 dans R? définie par

I R — RR?
’ (x1,x0,x3) = (x1+x2 —x3,%1 — 2xp + 3x3)

Il est utile d'identifier vecteurs lignes et vecteurs colonnes; ainsi f peut étre vue comme I'application
f (%) N ( x1+x2—x3 )
"\ xX1—2xp+3x3 ) °
Soient B = (e1,ep,e3) la base canonique de R et B’ = (fi, f») la base canonique de R?. C'est-a-dire :
1 0 0 1 0
e1=10 ep =11 e3=10 et f1= 0 fo= 1
0 0 1

1. Quelle est la matrice de f dans les bases BB et 3 ?

e Ona f(e1) = f(1,0,0) = (1,1) = f1 + f>. La premiére colonne de la matrice est donc (1).
e De méme f(e;) = f(0,1,0) = (1,—2) = fi — 2f,. La deuxiéme colonne de la matrice est donc ( 1,).
e Enfin f(e3) = £(0,0,1) = (=1,3) = —f1 4 3f>. La troisiéme colonne de la matrice est donc ( 3! ).

Ainsi la matrice A associée a f, de B vers B s'écrit

2. On va maintenant changer la base de I'espace de départ et celle de |'espace d'arrivée. Soient les vecteurs

1 1 0 1 1
e1=1(1 e=10 es= |1 ¢1 = (0> ¢y = (1)
0 1 1

By = (€1,€2,€3) est une base de R> et B = (¢1,¢2) est une base de R2.

Quelle est la matrice de f dans les bases By et B(’)?

fler) = f(1,1,0) = (2,-1) = 3¢1 — 2, f(e2) = f(1,0,1) = (0,4) = —4¢1 + 442, f(e3) = f(0,1,1) =

(0,1) = —¢1 + ¢, donc
A— ( 3 -4 —1>
-1 4 1/

Cet exemple illustre bien le fait que la matrice dépend du choix des bases.

Définition 3 (Valeurs propres, vecteurs propres).
Soit f : E — E un endomorphisme.

o A € K est dite valeur propre de I'endomorphisme f s'il existe un vecteur non nul v € E tel que
f(v) =Av

o Le vecteur v est alors appelé vecteur propre de f, associé a la valeur propre A.

e Le spectre de f est |I'ensemble des valeurs propres de f, noté sp(f).
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Exemple 2.
Soit f : R3 — RR® définie par

flx,y,z) = (—2x =2y +2z,-3x—y+3z,—x+y+2).
Le vecteur v1 = (1,1,0) est vecteur propre. En effet, f(1,1,0) = (—4, —4,0), autrement dit
f(v1) = —4o1.

Ainsi v1 est un vecteur propre associé a la valeur propre A; = —4. On a également v, = (0,1,1) vecteur propre
associé a la valeur propre Ay =2, et v3 = (1,0,1) vecteur propre associé a la valeur propre A3 = 0. On peut écrire

I'application f sous forme matricielle

f(X) =AX
avec
x -2 -2 2
z -1 1 1
On a alors
Avy = —4vq, Avy =20y, et Avsz = 0vs.

On a trois valeurs propres, et il ne peut y en avoir plus car la matrice A est de taille 3 x 3. On a donc

sp(f) = {-4,2,0}.

Exemple 3.
Soit f : R" — R” I'application linéaire définie par

fo(xg, oo, xp—1,%n) — (x1,...,%x,-1,0) .
Géométriquement, f est une projection sur R"~! x {0} C IR". Notons que
e1=(1,0,0,...), e =(0,1,0,...), ..., en=1(0,...,0,1)
sont les n vecteurs de la base canonique de IR". Alors
flen)=e, f(e2)=ey ..., flen1)=en—1, et flen) =0

Ainsi eq,...,e,_1 sont des vecteurs propres associés a la valeur propre 1. Et e, est un vecteur propre associé a la
valeur propre 0. On a alors
sp(f) = {0,1}.

En pratique c'est |'écriture matricielle qui nous interessera en premier lieu. Voici la définition de valeurs propres et
vecteurs propres pour les matrices.

Définition 4 (Valeurs propres, vecteurs propres pour les matrices).

Soit A € M, (K).
e A est dite valeur propre de la matrice A s'il existe un vecteur non nul X € K" tel que

AX =AX

e Le vecteur X est alors appelé vecteur propre de A associé a la valeur propre A.
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Exemple 4.
Soit A € M3(R) la matrice
1 3 3
A=| -2 11 =2
8 -7 6
-1
e Vérifions que X; = 0 est vecteur propre de A. En effet,
1
1 3 3 -1 2 -1
AXi=1[ -2 11 =2 0 = 0 =-2 0 = -2X;
8 -7 6 1 -2 1
Donc X est un vecteur propre de A associé a la valeur propre Ay = —2.
0
e Veérifions que X, = 1 est vecteur propre de A. On calcule AX; et on vérifie que
-1
AXy; =13X;
Donc X5 est un vecteur propre de A associé a la valeur propre Ay = 13
X1
e Vérifions que Az = 7 est valeur propre de A. Il s’agit donc de trouver un vecteur X3 = X tel que
X3
AX3 =7X3.
1 3 3 bel X1
AX3 =7X3 <— -2 11 =2 X2 =7 )
8 -7 6 X3 X3
x1 4 3x7 4+ 3x3 7x1
< —2x1 + 11xp — 2x3 = 7xp
8x1 — 7xp + 6x3 7x3
—6x1+3x +3x3 =0
< —2x1 +4xp, —2x3 =0

8x1 —7xp —x3=0

On résout ce systéme linéaire et on trouve comme ensemble de solutions

t
t avec te€R
t
1
Autrement dit, les solutions sont engendrées par le vecteur X3 = | 1 |. On vient de calculer que AX3 = 7X3.
1

Ainsi X3 est un vecteur propre de A associé a la valeur propre A3 =7

1.2 Sous-espaces propres

Cherchons une autre écriture de la relation définissant les vecteurs propres :

f) =A< f(v) —Av=0
<~ (f—/\idE) (U) =0

Le sous-espace propre associé a A est le sous-espace vectoriel E, défini comme

5-23
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[ Er={veE| f(v) = Av} ]

C'est le sous-espace vectoriel de E constitué des vecteurs propres de f associés a la valeur propre A, auquel on ajoute
le vecteur nul. Etre valeur propre, c'est donc exactement avoir un sous-espace propre non trivial :

A valeur propre <= E, # {0}

Lemme 1.
Soient A1, ..., A, des valeurs propres distinctes de f et, pour 1 < i < v, soit v; un vecteur propre associé a A;.
Alors les v; sont linéairement indépendants.

Cela implique que le nombre de valeurs propres est < dim(E).

Exemple 5.
Reprenons |'exemple avec f : R3 — R3 définie par

flx,y,z) =(—2x—2y+2z,-3x—y+3z,—x+y+2z).
Nous avions les valeurs propres et vecteurs propres associés suivants
M=-4 0=(1,1,0) Ay=2 v=(0,1,1) Az3=0 ov3=(1,0,1)

La famille (v1,v5,v3) forme une base de vecteurs propres de R3.

2 Polynéme caractéristique
Le polynéme caractéristique permet de trouver facilement les valeurs propres.
Définition 5.

Soit f : E — E un endomorphisme d'un espace vectoriel E de dimension finie n. Soit A € M,,(K) la matrice de
f dans une base B. Le polynéme caractéristique de f est définie comme suit

Pf(A) = Pa(A) = det (A — ALy)

Le polynéme caractéristique est indépendant de la matrice A (et du choix de la base B). En effet, si B est la matrice
du méme endomorphisme f mais dans une autre base B’, alors il existe P € M,,(K) inversible telle que

B =P 'AP.
On écrit
B— AL, =P ' (A—AL,)P
Alors,
Pg(A) =det(B—AlL,) = detl(P) -det (A — Al,) - det(P) = det (A — AL,) = Pa(A)

| Théoréme 1.
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Soit f : E — E un endomorphisme d'un espace vectoriel E de dimension finie.

A valeur propre de f <= P(A) =0
< det(A—AL,) =0

Exemple 6.
Soit E un C-espace vectoriel de dimension finie. Soit f : E — E un endomorphisme qui vérifie f2 = — f. Montrons
que le polyndme caractéristique est de la forme

Pr(A) = aA®(A+1)"

avec o € C* et a,b > 0. Pour cela, cherchons quelle peut étre une valeur propre de f. Soit A € K une valeur propre,
et soit v € E\{0} un vecteur propre associé. Alors

f(o) = Ao = f(f(v)) = f(Av)
— —f(v) = Af(v) car f>=—f et f estlintaire
— —Av =A% car v est vecteur propre

= —A =A% car v est non nul
= AA+1)=0
—A=0 ou A=-1

Les seules valeurs propres possibles sont donc 0 ou —1. Les seules racines possibles de Pf(/\) sont 0 et —1. Donc
Pr(A) = aA®(A +1)

oux € C* etab>0.

Il est possible de trouver des relations entre valeurs propres pour certains coefficients du polynome caractéristique.

Proposition 1.
Soit E un K-espace vectoriel de dimension n. Soit f : E — E un endomorphisme. Soit A la matrice de f dans
une base B. Le polynéme caractéristique de f est de degré n et vérifie :

P(A) = (~1)"A" + (<) T Te( AN - det(4)

Si f admet n valeurs propres, qui sont donc toutes les racines de Pf(X), alors de I'égalité
n
Pr(X) = (-1)"[T(X—-2)

i=1

on en déduit

e La somme des valeurs propres vaut Tr(A)

e Le produit des valeurs propres vaut det(A)

Exemple 7.
Nous considérons la matrice A suivante
1 3 3
A=1-2 11 =2
8 -7 6
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Alors

Py (/\) = det (A — /\13)

1 3 3 1 00
= det -2 11 -2|-X{0 1 0
8 =7 6 0 01
1-A 3 3
=| -2 11-Ar =2
8 -7 6-—-A

=-A34+1802 5170 — 182
=—(A4+2)(A=7)(A—13).

Donc les valeurs propres sont —2, 7 et 13.

3 Diagonalisation

3.1 Endomorphisme diagonalisable

Définition 6.
= On dit qu'un endomorphisme
f:E—E

est diagonalisable s'il existe une base de E formée de vecteurs propres de f.

= Pour une matrice A de M,,(K), on dit qu’elle est diagonalisable sur K s'il existe une matrice P € M,,(K)

inversible telle que
P1AP

soit diagonale.
Bien siir, ces deux définitions se rejoignent.

Proposition 2.
Si A est la matrice de f dans une base B quelconque alors

f est diagonalisable <= A est diagonalisable.

3.2 Conditions de diagonalisation

Proposition 3 (Condition suffisante de diagonalisation).

Soit f un endomorphisme d'un K-espace vectoriel E de dimension n (ou M une matrice carrée d'ordre n a
coefficients dans IK). Si le polynéme caractéristique de f (respectivement de M) admet n racines distinctes, alors
f (respectivement M) est diagonalisable.

Cette condition est suffisante mais pas nécessaire. Pour s'en convaincre il suffit de considérer la matrice unité. Elle
est trivialement diagonalisable puisqu’elle est déja diagonale, pourtant son polynéme caractéristique qui est

B(A) = (1-A)"

n'a pas de racines simples dés que 7 est supérieur ou égal a 2.
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Exemple 8.
Cette propriété est trés pratique. Soit par exemple la matrice A d'ordre 3

1 1
A= |0 1
0 3

o3 o

Il est immédiat qu’elle est diagonalisable puisque son polynéme caractéristique, égal a
Pp(A) = (1 =A)(m—=A)(3—A),

admet trois racines distinctes.

Théoréme 2 (Condition nécessaire et suffisante de diagonalisation).

Soit f un endomorphisme d'un K-espace vectoriel E de dimension n (ou M une matrice carrée d’ordre n a
coefficients dans K). Afin que f (respectivement M) soit diagonalisable, il faut et il suffit que les deux conditions
suivantes soient satisfaites

1. Le polynéme caractéristique de f (respectivement de M) se factorise en un produit de polynémes du premier
degré (non nécessairement distincts) a coefficients dans K.

2. Pour chaque valeur propre, la dimension du sous-espace propre associé est égale a son ordre de multiplicité
en tant que racine du polynéme caractéristique.

La propriété précédente prouve l'intérét des deux entiers liés & une valeur propre : son ordre de multiplicité en tant
que racine du polynédme caractéristique et la dimension du sous-espace propre qui lui est associé.

La premiére condition du théoréme 2 signifie que le polynéme caractéristique de f (respectivement de M ) s'écrit,
Pr(A) = (=1)" (X = Ay)™ o (X = Ap)™

les éléments Aq, - - , A, étant distincts deux a deux. Ce sont les valeurs propres de f. Si un polynédme vérifie cette
condition, on dit qu'il est scindé dans K. Par exemple, les polynémes

(X-1)3(X+1), —(X—m)(X-1)(X-3)

sont scindés dans R alors que le polynéme X2 + 1 ne I'est pas. On peut remarquer que tout polynéme a coefficients
dans C est scindé dans C.

Exemple 9.
Soit E un espace vectoriel réel de dimension 3 et (e1,ey,e3) une base de E. Soit f I'endomorphisme de E défini par

f(e1) = 3eq +2e; +e3
fle2) = —e1—e3
f(€1) =61 +ep+ 2e3

La matrice associé a f dans la base (eg, ey, e3) est

3 -1 1
A=12 0 1
1 -1 2

e Premiére étape : détermination du polynéme caractéristique de f.

Ona
3—-A -1 1
PFA)=| 2 A 1|,
1 -1 2—-A
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d'ou en remplagant la troisiéme colonne c3 par la somme de la deuxiéme et de la troisiéme, soit par c3 + ¢3,

on obtient
3—A -1 0 3—A =1 0
Pf(/\): 2 —A 1=A=(1-41) 2 —-A 1],
1 -1 1—-A 1 -1 1

et donc en remplacant I, par I, — I3 on obtient

3-A -1 0
PFA)=(1-X)| 1 —-A+1 0 :(l—X)<(3—/\)(—A+1)+1>
1 -1 1

D'ou
Pr(A) = (1—A)(A —2)%
Le polynéme caractéristique de f est scindé dans IR. Les valeurs propres sont 2 qui est une valeur propre d'ordre
de multiplicité 2, et 1 qui est une racine simple.
e Deuxiéme étape : détermination de la dimension des sous-espaces propres.

La dimension du sous-espace propre associé a une valeur propre simple est égale a 1, donc la dimension de E;
est égale a 1.

Déterminer le sous-espace propre associé a la valeur propre 2 revient a déterminer les vecteurs

U = X161 + X262 + X3€3

de E tels que
X1 1 -1 1 X1 0
(A-2L) x| =12 -2 1 x| =10
X3 1 -1 0 X3 0

Cette équation matricielle équivaut au systéme

X1 —x2 +x3 =0
2x1 —2xp +x3 =0
X1 —Xp =0

Ce qui équivaut a x1 = xp, et x3 = 0. Soit v = x1 (e7 +€) donc
E; = Vect(1,1,0)

La dimension de E; est égale a 1. Or 2 est une valeur propre double, donc I'endomorphisme f n'est pas
diagonalisable.

Exemple 10.
Soit la matrice A a coefficients dans R,

1 11
A=11 11
1 11

e Premiére étape : Détermination du polyndme caractéristique de A.
On a
1-X 1 1
Pa(A)=| 1 1-X 1
1 1 1-X

d'ol en remplacgant la ligne Iy par [ + I, + I3 on obtient

3-X 3-X 3-X 11 1
PAM)=| 1 1-X 1 |[=3-X)]1 1-X 1
1 1 1-X 1 1 1-X

10 - 23
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donc en remplacant successivement ¢y par ¢p — ¢q et ¢3 par c3 — ¢1 on obtient

1 0 0
PAM)=0B-X)[1 =X 0|=(3-X)X2
1 0 -X

Le polynéme caractéristique de A est scindé dans IR. Les valeurs propres sont 0 qui est une valeur propre
d’'ordre de multiplicité 2, et 3 qui est une racine simple.

e Deuxiéme étape : détermination de la dimension des sous-espaces propres.

La dimension du sous-espace associé a une valeur propre simple est égale 3 1, donc la dimension de Ej3 est

égale a 1.
Déterminer le sous-espace propre associé a la valeur propre 0 revient a déterminer les vecteurs v = (x,y,z) de
R3 tels que

1 11 X 0

1 11 y] =10

111 z 0

Cette équation matricielle équivaut a I'équation x +y +z = 0. Donc

Eo = Vect ((1,0,—1), (0,1, —1)>.

La dimension de Ej est égale & 2. Pour chaque valeur propre, la dimension du sous-espace propre associé
est égale a son ordre de multiplicité en tant que racine du polynéme caractéristique. La matrice est donc
diagonalisable !

e Troisiéme étape : recherche d'une base de veteurs propres.

Les vecteurs propres associé a la valeur propre 0 sont
(1,0,-1),(0,1,-1).

Le vecteur propre associé a la valeur propre 3 verifie

X -2 1 1 X 0
(A-3L)|ly]=(1 -2 1 y|l =10
z 1 1 -2 z 0

ce qui nous donne comme vecteur propre (1,1,1). On a donc

A =PDp!
avec
1 0 1 000
P=|0 1 1| e D=0 0 0
-1 -1 1 0 0 3

4 Exercices

Vous pouvez continuer & vous exercer sur votre espace jai20enmaths,
o) o QO ol vous y retrouverez des notions de cours ainsi que des exercices
corrigés. Si vous remarquez une erreur ou avez une suggestion pour

J'm m.aﬂ‘lb que cet espace de travail soit plus agréable a utiliser, ne surtout pas

hésiter 3 me le signaler par mail a a.gere@istom.fr.

Exercice 1
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On pose
-1 0 4
A= -2 3 2
2 01
Calculer AX ou
1
X=11
1
et en déduire que X est vecteur propre; quelle est la valeur propre associée?
Correction ¥ [04.0013]
Exercice 2
Déterminer les valeurs propres réelles de la matrice
1 0 -1
A= -1 1 0
0 -1 1
Correction ¥ [04.0012]
Exercice 3
On considére la matrice
3 2 1
A=| -1 0 -1
-1 -1 1
Est-elle diagonalisable ? Justifier
Correction ¥ [04.0018]
Exercice 4
Soit
4 —4 4
A= 3 -3 4
3 -3 4
Diagonaliser A.
Correction ¥ [04.0017]
Exercice 5
Diagonaliser les matrices suivantes :
0o 2 -1 0 3 2 1 0 O
A= 3 -2 0 ,B= -2 5 2 |,C=10 1 0
-2 2 1 2 =30 1 -1 2
On donnera aussi la matrice de passage de la base canonique a la base de vecteurs propres.
Correction ¥ [04.0016]

Exercice 6
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Soit M la matrice réelle 3 x 3 suivante :
0 2 -1
M=13 -2 0
-2 2 1
1. Déterminer les valeurs propres de M.
2. Montrer que M est diagonalisable.
3. Déterminer une base de vecteurs propres et P la matrice de passage.
4. Ona D =P MP, pour k € N exprimer M en fonction de D¥, puis calculer M.
Correction ¥ [04.0019]
Exercice 7
Soit
1 0 0
A=|0 1 O
1 -1 2
Démontrer que A est diagonalisable et trouver une matrice P telle que P~1AP soit diagonale.
Correction ¥ [04.0020]
Exercice 8
Soit
1 1 -1
A=10 1 0
1 0 1
Factoriser le polynéme caractéristique de A. La matrice A est-elle diagonalisable dans R ? dans C?
Correction ¥ [04.0021]
Exercice 9
Soit
a c
A= (C d) € M(R)
Démontrer que A est diagonalisable dans IR.
Correction ¥ [04.0022]
Exercice 10
Soit A la matrice suivante
3 0 —1
A=12 4 2
-1 0 3

1. Déterminer et factoriser le polynome caracteristique de A.

2. Démontrer que A est diagonalisable et determiner une matrice D diagonale et une matrice P inversible telles
A =PDP~ 1L

3. Inverser la matrice P.

4. Calculer A™ pour n € IN.
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Correction ¥ [04.0015]
Exercice 11
Soit m un nombre réel et A dont la matrice suivante
1 0 1
A= -1 2 1
2—m m—2 m
1. Quelles sont les valeurs propres de A?
2. Pour quelles valeurs de m la matrice A est-elle diagonalisable ?
3. On suppose m = 3. Calculer A* pour tout k € IN.
Correction ¥ [04.0014]

Exercice 12
Soient A et B deux matrices carrées de M3(C) telles que A = B2,
1. Montrer que si B est diagonalisable alors A est diagonalisable. En utilisant la matrice
0 0 1
0 0O
0 0O

justifier que la réciproque est fausse.

2. On veut déterminer les matrices B € M3(C) telles que A = B? lorsque

1 -5 -5
A= -5 3 3
-5 3 3

(a) Veérifier que A est diagonalisable et préciser P € M3(C) et D diagonale telles que A = PDP~!
(b) Si C = P~!BP, établir que C-C = D puis que C et D commutent.

(c) En déduire les matrices C qui conviennent puis les solutions du probléme.

Correction ¥ [04.0029]

Exercice 13

On consideére la suite ()N définie par ug =0, u; = 1 et par la relation de récurrence

1
Uyl = E(un + un—l)-

1. Déterminer une matrice A € M,(IR) telle que pour tout n > 1 on ait
Up41 — An uy
Uy ug )’

2. Déterminer le polyndme caractéristique P4(X) de A et calculer ses racines Aq et Aj.

Justifier.
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3. Soit Ry (X) = ayX + b, le reste de la division euclidienne de X" par P4(X). Calculer a, et b, (on pourra
utiliser les racines Aq et Ap).

4. Montrer que A" = a, A + b, I, en déduire que la matrice A" converge lorsque 1 tend vers +oo vers une limite
A que I'on déterminera. Calculer lim uy,.

n—+00

Correction Vv [04.0025]
Exercice 14

X =y+z
Résoudre le systéeme différentiel suivant : ¢ ¢/ = —x+2y +z

Z=x+z
Correction ¥ [04.0001]
Exercice 15

¥ o=x+2y—z

Résoudre le systéeme différentiel suivant : < v/ =2x+4y —2z
zZ =—x—-2y+z

Correction ¥ [04.0002]

Exercice 16
Soient x, y et z trois applications dérivables sur IR et w une application trois fois dérivable sur IR.
1. Résoudre I'équation différentielle
w///+w//+wl+w:0
w(0) =1, &'(0) =0, w"(0) = 0.
2. Résoudre le systéme différentiel
X =2x+2y+2z
y=x+3y+2z

Z=—-Xx—-Yy—z

0) = 1, 0) = 2, %0) = —1.

Correction ¥ [04.0011]

Exercice 17

On considére une matrice

3 =20
M=1|1 0 O
0 1 0

et f I'endomorphisme de R® dont la matrice dans la base canonique de R est M.
1. L'endomorphisme f est-il inversible ?
2. Montrer que M est diagonalisable. Trouver une base de vecteurs propres de M. Diagonaliser M.

3. On considére la matrice

0 3 -1
M=10 3 -2
01 O

Montrer que M’ admet les mémes valeurs propres que M.
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4. Montrer qu'il existe une une matrice inversible Q telle que M’ = QMQ 1.
Correction ¥ [04.0004]

Exercice 18

On considére la matrice

-4 —6 0
A=|3 5 0
3 6 5

1. Déterminer les valeurs propres de A puis la diagonaliser la matrice A.
2. Déterminer, pour tout n € IN, A",

3. On considére maintenant trois suites réelles (1), (v,) et (w,) définies par leurs premiers termes respectifs 1,
vy et wy et Vn € N,
Up = —4uy_1 — 60,1
Uy = 3uy_1+ 50,1
wy = 3u,_1 +60v,_1+ 5w, _1.

Déterminer, pour chaque n € IN, les expressions de 1, v, et wy en fonction de n et ug, vy et wy.

Correction ¥ [04.0008]

Exercice 19

On considére la matrice

1 13
A=1|1 3 1
311

1. Déterminer les valeurs propres de A puis diagonaliser la matrice A.
2. Déterminer A",

3. On considére maintenant trois suites réelles (1), (v,) et (w;) définies par leurs premiers termes respectifs 1,
vo et wy et Vn € N,
Uyl = Uy + Op + 3wy
Uyl = U + 30y + Wy
Wy1 = Uy + vy + Wy

Déterminer, pour chaque n € IN, les expressions de uy,, v, et wy, en fonction de n et ug, vy et wy.

Correction ¥ [04.0009]
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Correction de l'exercice 1 A

On a
-1 0 4 1

AX=[ -2 3 2 1
2 01 1

X est donc un vecteur propre de A associé a la valeur propre 3.

3 1
31=3]1
3 1

)
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Correction de l'exercice 2 A

cf. correction manuscrite.

Correction de I'exercice 3 A

cf. correction manuscrite.

Correction de I'exercice 4 A

cf. correction manuscrite.

Correction de l'exercice 5 A

cf. correction manuscrite.

Correction de I'exercice 6 A

Soit M la matrice réelle 3 x 3 suivante :

1. Déterminons les valeurs propres de M.
Ce sont les racines du polynéme caractéristique
-X 2 -1

Pu(X)=|3 —2-X 0
2 2  1-X

3

_1‘

La matrice M admet donc trois valeurs propres distinctes qui sont : 1,2, et —4.

2. Montrons que M est diagonalisable.

-2

—-2-X

2

(1-X)(X*+2X—8)
(1—X)(X+4)(X-2).

’+(1—x)’_

Nous venons de voir que M, matrice réelle 3 x 3, admet trois valeurs propres réelles distinctes, cela prouve que

M est diagonalisable.

3. Déterminons une base de vecteurs propres et P la matrice de passage.

Les trois sous-espaces propres distincts sont de dimension 1, il suffit de déterminer un vecteur propre pour
chacune des valeurs propres.

A =1: Le vecteur il de coordonnées (x,y,z) est un vecteur propre pour la valeur propre 1 si et seulement si

2y—z=x —x+2y—z=0 ‘=
3x—2y=y < ({ 3x—3y=0 (:){x:z
—2x+2y+z=2z —2x+2y=0 B

Le sous-espace propre associé a la valeur propre A = 1 est la droite vectorielle engendrée par le vecteur ¢ de
coordonnées (1,1,1).

17-23



\ Ecole
/ supérieure

&

oy dagro-
. développement
Istom international

A =2 Le vecteur il de coordonnées (x,v,z) est un vecteur propre pour la valeur propre 2 si et seulement si

—2x+2y—z=0 a4
3x—4y =0 = {ixzxiyz_—oz—o
—2x4+2y—z=0 y—2=

Le sous-espace propre associé a la valeur propre A = 2 est la droite vectorielle engendrée par le vecteur 5 de
coordonnées (4,3, —2).
A = —4 : Le vecteur il de coordonnées (x,1,z) est un vecteur propre pour la valeur propre —4 si et seulement
si

—4x+2y—z=

+2y—z=0 e 2—0
3x+2y =20 =
2y +3x =20

—2x+2y+5z=0
Le sous-espace propre associé a la valeur propre A = —4 est la droite vectorielle engendrée par le vecteur &3
de coordonnées (2, —3,2).

Les vecteurs é1,¢) et 3 forment une base de E composée de vecteurs propres, la matrice de passage P est
égale a

1 4 2
P=(1 3 -3
1 -2 2
. Exprimons MK en fonction de D¥, puis calculons MF.
On a
1 0 0
D=P'MP=(0 2 0
0 0 —4
pour k € IN, on a
1 0 0
Dfk=10 2 o |,
0 0 (—4)f
et Mk = PDfP~1,
1
Calculons donc la matrice P~' :ona P71 = detp(comP)t. Or
1 4 2 1 6 2 1 3
detP=|1 3 =3|=1|1 0 —3——6‘1 2‘——30,
1 -2 2 1 0 2
et
0 -5 -5
comP=|-12 O 6
-18 5 -1
d'on
1 0 -—-12 -18
pl= 5|5 0 5
-5 6 -1
On a donc

1 —52k2 _10(—4)F  —12412(—4)F 184 5.2K+2 —2(—4)k
Mk = ppkp~1 = -3 —152F —15(—4)F  —12 —18(—4)F 18 4-5.2K+1 1 3(—4)k
52k _10(—4)F  —12+12(—4)F —18 — 52K —2(—4)k

Correction de I'exercice 7 A
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Soit
1 0 O
A=|0 1 0
1 -1 2

Démontrons que A est diagonalisable et trouvons une matrice P telle que P~ AP soit diagonale.
Commencons par calculer le polynéme caractéristique de A :

1-X 0 0
PA(X)=| 0 1-X 0 |[=(1-X)22-X)
1 -1 2-X

Les racines du polynéme caractéristique sont les réels 1 avec la multiplicité 2, et 2 avec la multiplicité 1.
Déterminons les sous-espaces propres associés : Soit E; le sous-espace propre associé a la valeur propre double 1.
E1={V(x,y,z) R}/ AV =V},

X=X
VeE +— y=y — x—y+z=0
x—y+z=0

Eq est donc un plan vectoriel, dont les vecteurs e; = (1,1,0) et e; = (0,1,1) forment une base.
Soit E; le sous-espace propre associé a la valeur propre simple 2.
Ey ={V(x,y,z) e R®/ A.V =2V},

x=2x
VeE < y=2 <~ x=0,y=0
X—y+2z=2z

E; est donc une droite vectorielle, dont le vecteur e3 = (0,0,1) est une base.

Les dimensions des sous-espaces propres sont égales a la multiplicité des valeurs propres correspondantes, la matrice
A est donc diagonalisable. Dans la base (eq,ep,¢e3) I'endomorphisme représenté par A (dans la base canonique) a
pour matrice.

1 00
D=0 1 0
0 0 2
la matrice de passage
1 0 0
P=1|11 0
01 1
vérifie P"1AP = D.
Correction de I'exercice 8 A
Soit
1 1 -1
A=|0 1 0
1 0 1
Factorisons le polynéme caractéristique de A.
1-X 1 -1
PAX)=| 0 1-X 0 |=01-XP 4+(1-X)=01-X)(1-X)?>+1)=(1-X)(X*-2X+2)
1 0 1-X
factorisons maintenant le polynéme X% —2X + 2, le discriminant réduit A’ = 1 —2 = —1, ce polynéme n'admet

donc pas de racines réelles, mais deux racines complexes conjuguées qui sont : 14+iet 1 —i. On a Py(X) =
1-X)1-i—-X)(1+i-X).

La matrice A n'est pas diagonalisable dans IR car son polynéme caractéristique n'a pas toutes ses racines dans R,
elle est diagonalisable dans C car c’est une matrice 3 X 3 qui admet trois valeurs propres distinctes.
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Correction de I'exercice 9 A
Soit
a c
A= (C d> € Mz(]R)

Démontrons que A est diagonalisable dans IR.
Le polynéme caractéristique P4 (X) est égal a

a—X c

dlg X -X) - =X (a+d)X +ad -,

déterminons ses racines : calculons le discriminant :

A= (a+d)?—4(ad — c?)
=0 +d? + 2ad — 4ad + 4c?
= a? +d? — 2ad + 4c?
=(a—d)?+4c*>0

OnaA=0 <= a—d=0etc=0, mais, si ¢ =0, la matrice A est déja diagonale. Sinon A > 0 et le polynéme
caractéristique admet deux racines réelles distinctes, ce qui prouve que la matrice est toujours diagonalisable dans R.

Correction de I'exercice 10 A

cf. correction manuscrite.

Correction de l'exercice 11 A

cf. correction manuscrite.

Correction de I'exercice 12 A

cf. correction manuscrite.

Correction de l'exercice 13 A

cf. correction manuscrite.

Correction de l'exercice 14 A

cf. correction manuscrite.

Correction de l'exercice 15 A

cf. correction manuscrite.

Correction de I'exercice 16 A

cf. correction manuscrite.

Correction de I'exercice 17 A

cf. correction manuscrite.
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Correction de I'exercice 18 a

cf. correction manuscrite.

Correction de I'exercice 19 A

cf. correction manuscrite.
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Wolfram|Alpha est un moteur de recherche scientifique, une superbe =] =
* calculatrice a tout faire. Disponible sur le navigateur mais également L 2
sur mobile avec une application téléchargeable sur Google Play et I'App
WolframAlpha  Store. =]

Etudiez en musique !
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Etudiant(e) (Nom, Prénom) i .. .. ...t

PrOmMOtiON, GrOUPE & e

Organisation de ce cours

Ce cours est composé de 6 séances de 2 heures.

Auteurs de ces notes de cours

Cours et exercices rédigés par Antoine Géré.
Exercices rédigés par Antoine Géré.

Relu par (coming soon).
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