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Résumé

Nous abordons ici le problème de diagonalisation des matrices. Une matrice n’est pas en general diagonalisable,
c’est-à-dire semblable à une matrice diagonale. Nous allons énoncer des conditions qui déterminent exactement
quand une matrice est diagonalisable. Nous verrons quelques applications de cette procédure, ainsi que la méthode
de trigonalisation qui peut etre utile lorsque diagonaliser est impossible.
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Dans ce chapitre, E est un K-espace vectoriel. Ici K designera R ou C. Sauf mention contraire, E sera de dimension
finie. Un espace vectoriel est un ensemble d’objets, appelés vecteurs, que l’on peut additionner entre eux, et que l’on
peut multiplier par un scalaire (c’est à dire un nombre).
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1 Valeurs propres, vecteurs propres

1.1 Définitions
Voici deux transformations simples définies par une matrice.

1.

h :
(

x
y

)
7→

(
2 0
0 2

)(
x
y

)
=

(
2x
2y

)
L’application h envoie n’importe quel vecteur

(
x
y

)
sur son double 2

(
x
y

)
.

2.

k :
(

x
y

)
7→

(
2 0
0 3

)(
x
y

)
=

(
2x
3y

)
L’application k envoie les vecteurs du type

(
x
0

)
sur leurs doubles 2

(
x
0

)
, alors que les vecteurs

(
0
y

)

sont envoyés sur leurs triples 3
(

0
y

)
.

Pour une matrice quelconque, il s’agit de voir comment on se ramène à ces situations géométriques simples. C’est
ce qui nous amène à la notion de vecteurs propres et valeurs propres.

Commençons par définir les valeurs et les vecteurs propres d’une application linéaire.

Définition 1 (Endomorphisme).
f : E → E est appelé un endomorphisme si f est une application linéaire de E dans lui-même. Autrement dit,
pour tout v ∈ E, f (v) ∈ E et, en plus, pour tous u, v ∈ E et tout α ∈ K :

f (u + v) = f (u) + f (v) et f (αv) = α f (v)

Les deux transformations précédentes, h et k, sont des endomorphismes de M21(R). On peut ainsi donner la définition
suivante de valeurs propres, vecteurs propres de ce types d’applications.

Définissons la matrice d’une application linéaire.

Définition 2.
La matrice de l’application linéaire f par rapport aux basesa B et B′ est la matrice de Mnp(K) dont la j-ème
colonne est constituée par les coordonnées du vecteur f (ej) dans la base B′ = ( f1, f2, . . . , fn). On écrit


f (e1) . . . f (ej) . . . f (ep)

f1 a11 a1j . . . a1p
f2 a21 a2j . . . a2p
...

...
...

...
...

fn an1 anj . . . anp


aDire que cette famille de vecteurs est une base signifie que tout vecteurs de l’espace vectoriel (ici R3), s’exprime de manière

unique comme combinaison linéaire des éléments de cette base. Par exemple dans le cas de R3 une base possible est la base habituelle(⃗
i, j⃗, k⃗

)
.

En termes plus simples : c’est la matrice dont les vecteurs colonnes sont l’image par f des vecteurs de la base de
départ B, exprimée dans la base d’arrivée B′.
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Exemple 1.
Soit f l’application linéaire de R3 dans R2 définie par

f :
{

R3 −→ R2

(x1, x2, x3) 7−→ (x1 + x2 − x3, x1 − 2x2 + 3x3)

Il est utile d’identifier vecteurs lignes et vecteurs colonnes ; ainsi f peut être vue comme l’application

f :
( x1

x2
x3

)
7→

(
x1+x2−x3

x1−2x2+3x3

)
.

Soient B = (e1, e2, e3) la base canonique de R3 et B′ = ( f1, f2) la base canonique de R2. C’est-à-dire :

e1 =

1
0
0

 e2 =

0
1
0

 e3 =

0
0
1

 et f1 =

(
1
0

)
f2 =

(
0
1

)

1. Quelle est la matrice de f dans les bases B et B′ ?

• On a f (e1) = f (1, 0, 0) = (1, 1) = f1 + f2. La première colonne de la matrice est donc
(

1
1

)
.

• De même f (e2) = f (0, 1, 0) = (1,−2) = f1 − 2 f2. La deuxième colonne de la matrice est donc
( 1
−2

)
.

• Enfin f (e3) = f (0, 0, 1) = (−1, 3) = − f1 + 3 f2. La troisième colonne de la matrice est donc
( −1

3

)
.

Ainsi la matrice A associée à f , de B vers B′ s’écrit

A =

(
1 1 −1
1 −2 3

)
2. On va maintenant changer la base de l’espace de départ et celle de l’espace d’arrivée. Soient les vecteurs

ϵ1 =

1
1
0

 ϵ2 =

1
0
1

 ϵ3 =

0
1
1

 ϕ1 =

(
1
0

)
ϕ2 =

(
1
1

)

B0 = (ϵ1, ϵ2, ϵ3) est une base de R3 et B′
0 = (ϕ1, ϕ2) est une base de R2.

Quelle est la matrice de f dans les bases B0 et B′
0 ?

f (ϵ1) = f (1, 1, 0) = (2,−1) = 3ϕ1 − ϕ2, f (ϵ2) = f (1, 0, 1) = (0, 4) = −4ϕ1 + 4ϕ2, f (ϵ3) = f (0, 1, 1) =
(0, 1) = −ϕ1 + ϕ2, donc

A =

(
3 −4 −1
−1 4 1

)
.

Cet exemple illustre bien le fait que la matrice dépend du choix des bases.

Définition 3 (Valeurs propres, vecteurs propres).
Soit f : E → E un endomorphisme.

• λ ∈ K est dite valeur propre de l’endomorphisme f s’il existe un vecteur non nul v ∈ E tel que

f (v) = λv

• Le vecteur v est alors appelé vecteur propre de f , associé à la valeur propre λ.

• Le spectre de f est l’ensemble des valeurs propres de f , noté sp( f ).
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Exemple 2.
Soit f : R3 → R3 définie par

f (x, y, z) = (−2x − 2y + 2z,−3x − y + 3z,−x + y + z).

Le vecteur v1 = (1, 1, 0) est vecteur propre. En effet, f (1, 1, 0) = (−4,−4, 0), autrement dit

f (v1) = −4v1.

Ainsi v1 est un vecteur propre associé à la valeur propre λ1 = −4. On a également v2 = (0, 1, 1) vecteur propre
associé à la valeur propre λ2 = 2, et v3 = (1, 0, 1) vecteur propre associé à la valeur propre λ3 = 0. On peut écrire

l’application f sous forme matricielle
f (X) = AX

avec

X =

 x
y
z

 et A =

 −2 −2 2
−3 −1 3
−1 1 1


On a alors

Av1 = −4v1, Av2 = 2v2, et Av3 = 0v3.

On a trois valeurs propres, et il ne peut y en avoir plus car la matrice A est de taille 3 × 3. On a donc

sp( f ) = {−4, 2, 0}.

Exemple 3.
Soit f : Rn → Rn l’application linéaire définie par

f : (x1, . . . , xn−1, xn) 7→ (x1, . . . , xn−1, 0) .

Géométriquement, f est une projection sur Rn−1 × {0} ⊂ Rn. Notons que

e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, . . .), . . . , en = (0, . . . , 0, 1)

sont les n vecteurs de la base canonique de Rn. Alors

f (e1) = e1, f (e2) = e2, . . . , f (en−1) = en−1, et f (en) = 0

Ainsi e1, . . . , en−1 sont des vecteurs propres associés à la valeur propre 1. Et en est un vecteur propre associé à la
valeur propre 0. On a alors

sp( f ) = {0, 1}.

En pratique c’est l’écriture matricielle qui nous interessera en premier lieu. Voici la définition de valeurs propres et
vecteurs propres pour les matrices.

Définition 4 (Valeurs propres, vecteurs propres pour les matrices).
Soit A ∈ Mn(K).

• λ est dite valeur propre de la matrice A s’il existe un vecteur non nul X ∈ Kn tel que

AX = λX

• Le vecteur X est alors appelé vecteur propre de A associé à la valeur propre λ.
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Exemple 4.
Soit A ∈ M3(R) la matrice

A =

 1 3 3
−2 11 −2
8 −7 6



• Vérifions que X1 =

 −1
0
1

 est vecteur propre de A. En effet,

AX1 =

 1 3 3
−2 11 −2
8 −7 6

 −1
0
1

 =

 2
0
−2

 = −2

 −1
0
1

 = −2X1

Donc X1 est un vecteur propre de A associé à la valeur propre λ1 = −2.

• Vérifions que X2 =

 0
1
−1

 est vecteur propre de A. On calcule AX2 et on vérifie que

AX2 = 13X2

Donc X2 est un vecteur propre de A associé à la valeur propre λ2 = 13

• Vérifions que λ3 = 7 est valeur propre de A. Il s’agit donc de trouver un vecteur X3 =

 x1
x2
x3

 tel que

AX3 = 7X3.

AX3 = 7X3 ⇐⇒

 1 3 3
−2 11 −2
8 −7 6

 x1
x2
x3

 = 7

 x1
x2
x3


⇐⇒

 x1 + 3x2 + 3x3
−2x1 + 11x2 − 2x3

8x1 − 7x2 + 6x3

 =

 7x1
7x2
7x3


⇐⇒

 −6x1 + 3x2 + 3x3 = 0
−2x1 + 4x2 − 2x3 = 0
8x1 − 7x2 − x3 = 0

On résout ce système linéaire et on trouve comme ensemble de solutions
 t

t
t

 avec t ∈ R

 .

Autrement dit, les solutions sont engendrées par le vecteur X3 =

 1
1
1

. On vient de calculer que AX3 = 7X3.

Ainsi X3 est un vecteur propre de A associé à la valeur propre λ3 = 7

1.2 Sous-espaces propres
Cherchons une autre écriture de la relation définissant les vecteurs propres :

f (v) = λv ⇐⇒ f (v)− λv = 0
⇐⇒ ( f − λidE) (v) = 0

Le sous-espace propre associé à λ est le sous-espace vectoriel Eλ défini comme
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Eλ = {v ∈ E | f (v) = λv}

C’est le sous-espace vectoriel de E constitué des vecteurs propres de f associés à la valeur propre λ, auquel on ajoute
le vecteur nul. Être valeur propre, c’est donc exactement avoir un sous-espace propre non trivial :

λ valeur propre ⇐⇒ Eλ ̸= {0}

Lemme 1.
Soient λ1, . . . , λr des valeurs propres distinctes de f et, pour 1 6 i 6 r, soit vi un vecteur propre associé à λi.
Alors les vi sont linéairement indépendants.

Cela implique que le nombre de valeurs propres est ≤ dim(E).

Exemple 5.
Reprenons l’exemple avec f : R3 → R3 définie par

f (x, y, z) = (−2x − 2y + 2z,−3x − y + 3z,−x + y + z) .

Nous avions les valeurs propres et vecteurs propres associés suivants

λ1 = −4 v1 = (1, 1, 0) λ2 = 2 v2 = (0, 1, 1) λ3 = 0 v3 = (1, 0, 1)

La famille (v1, v2, v3) forme une base de vecteurs propres de R3.

2 Polynôme caractéristique

Le polynôme caractéristique permet de trouver facilement les valeurs propres.

Définition 5.
Soit f : E → E un endomorphisme d’un espace vectoriel E de dimension finie n. Soit A ∈ Mn(K) la matrice de
f dans une base B. Le polynôme caractéristique de f est définie comme suit

Pf (λ) = PA(λ) = det (A − λIn)

Le polynôme caractéristique est indépendant de la matrice A (et du choix de la base B). En effet, si B est la matrice
du même endomorphisme f mais dans une autre base B′, alors il existe P ∈ Mn(K) inversible telle que

B = P−1 AP.

On écrit
B − λIn = P−1 (A − λIn) P

Alors,

PB(λ) = det (B − λIn) =
1

det(P)
· det (A − λIn) · det(P) = det (A − λIn) = PA(λ)

Théorème 1.
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Soit f : E → E un endomorphisme d’un espace vectoriel E de dimension finie.

λ valeur propre de f ⇐⇒ Pf (λ) = 0

⇐⇒ det(A − λIn) = 0

Exemple 6.
Soit E un C-espace vectoriel de dimension finie. Soit f : E → E un endomorphisme qui vérifie f 2 = − f . Montrons
que le polynôme caractéristique est de la forme

Pf (λ) = αλa(λ + 1)b

avec α ∈ C∗ et a, b > 0. Pour cela, cherchons quelle peut être une valeur propre de f . Soit λ ∈ K une valeur propre,
et soit v ∈ E\{0} un vecteur propre associé. Alors

f (v) = λv =⇒ f ( f (v)) = f (λv)

=⇒ − f (v) = λ f (v) car f 2 = − f et f est linéaire

=⇒ −λv = λ2v car v est vecteur propre

=⇒ −λ = λ2 car v est non nul
=⇒ λ(λ + 1) = 0
=⇒ λ = 0 ou λ = −1

Les seules valeurs propres possibles sont donc 0 ou −1. Les seules racines possibles de Pf (λ) sont 0 et −1. Donc

Pf (λ) = αλa(λ + 1)b

où α ∈ C∗, et a, b > 0.

Il est possible de trouver des relations entre valeurs propres pour certains coefficients du polynome caractéristique.

Proposition 1.
Soit E un K-espace vectoriel de dimension n. Soit f : E → E un endomorphisme. Soit A la matrice de f dans
une base B. Le polynôme caractéristique de f est de degré n et vérifie :

Pf (λ) = (−1)nλn + (−1)n−1 Tr(A)λn−1 + · · ·+ det(A)

Si f admet n valeurs propres, qui sont donc toutes les racines de Pf (X), alors de l’égalité

Pf (X) = (−1)n
n

∏
i=1

(X − λi)

on en déduit

• La somme des valeurs propres vaut Tr(A)

• Le produit des valeurs propres vaut det(A)

Exemple 7.
Nous considérons la matrice A suivante

A =

 1 3 3
−2 11 −2
8 −7 6


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Alors

PA(λ) = det (A − λI3)

= det

 1 3 3
−2 11 −2
8 −7 6

− X

1 0 0
0 1 0
0 0 1


=

∣∣∣∣∣∣
1 − λ 3 3
−2 11 − λ −2
8 −7 6 − λ

∣∣∣∣∣∣
= · · ·
= −λ3 + 18λ2 − 51λ − 182
= −(λ + 2)(λ − 7)(λ − 13).

Donc les valeurs propres sont −2, 7 et 13.

3 Diagonalisation

3.1 Endomorphisme diagonalisable

Définition 6.
■ On dit qu’un endomorphisme

f : E → E

est diagonalisable s’il existe une base de E formée de vecteurs propres de f .

■ Pour une matrice A de Mn(K), on dit qu’elle est diagonalisable sur K s’il existe une matrice P ∈ Mn(K)
inversible telle que

P−1 AP

soit diagonale.

Bien sûr, ces deux définitions se rejoignent.

Proposition 2.
Si A est la matrice de f dans une base B quelconque alors

f est diagonalisable ⇐⇒ A est diagonalisable.

3.2 Conditions de diagonalisation

Proposition 3 (Condition suffisante de diagonalisation).
Soit f un endomorphisme d’un K-espace vectoriel E de dimension n (ou M une matrice carrée d’ordre n à
coefficients dans K). Si le polynôme caractéristique de f (respectivement de M) admet n racines distinctes, alors
f (respectivement M) est diagonalisable.

Cette condition est suffisante mais pas nécessaire. Pour s’en convaincre il suffit de considérer la matrice unité. Elle
est trivialement diagonalisable puisqu’elle est déjà diagonale, pourtant son polynôme caractéristique qui est

PI(λ) = (1 − λ)n

n’a pas de racines simples dès que n est supérieur ou égal à 2.
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Exemple 8.
Cette propriété est très pratique. Soit par exemple la matrice A d’ordre 3

A =

1 6 1
0 π 1
0 0 3


Il est immédiat qu’elle est diagonalisable puisque son polynôme caractéristique, égal à

PA(λ) = (1 − λ)(π − λ)(3 − λ),

admet trois racines distinctes.

Théorème 2 (Condition nécessaire et suffisante de diagonalisation).
Soit f un endomorphisme d’un K-espace vectoriel E de dimension n (ou M une matrice carrée d’ordre n à
coefficients dans K). Afin que f (respectivement M) soit diagonalisable, il faut et il suffit que les deux conditions
suivantes soient satisfaites

1. Le polynôme caractéristique de f (respectivement de M) se factorise en un produit de polynômes du premier
degré (non nécessairement distincts) à coefficients dans K.

2. Pour chaque valeur propre, la dimension du sous-espace propre associé est égale à son ordre de multiplicité
en tant que racine du polynôme caractéristique.

La propriété précédente prouve l’intérêt des deux entiers liés à une valeur propre : son ordre de multiplicité en tant
que racine du polynôme caractéristique et la dimension du sous-espace propre qui lui est associé.

La première condition du théorème 2 signifie que le polynôme caractéristique de f (respectivement de M ) s’écrit,

Pf (λ) = (−1)n (X − λ1)
nλ1 · · · (X − λr)

nλr

les éléments λ1, · · · , λr étant distincts deux à deux. Ce sont les valeurs propres de f . Si un polynôme vérifie cette
condition, on dit qu’il est scindé dans K. Par exemple, les polynômes

(X − 1)2(X + 1), −(X − π)(X − 1)(X − 3)

sont scindés dans R alors que le polynôme X2 + 1 ne l’est pas. On peut remarquer que tout polynôme à coefficients
dans C est scindé dans C.

Exemple 9.
Soit E un espace vectoriel réel de dimension 3 et (e1, e2, e3) une base de E. Soit f l’endomorphisme de E défini par

f (e1) = 3e1 + 2e2 + e3

f (e2) = −e1 − e3

f (e1) = e1 + e2 + 2e3

La matrice associé à f dans la base (e1, e2, e3) est

A =

3 −1 1
2 0 1
1 −1 2


• Première étape : détermination du polynôme caractéristique de f .

On a

Pf (λ) =

∣∣∣∣∣∣
3 − λ −1 1

2 −λ 1
1 −1 2 − λ

∣∣∣∣∣∣ ,
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d’où en remplaçant la troisième colonne c3 par la somme de la deuxième et de la troisième, soit par c3 + c2,
on obtient

Pf (λ) =

∣∣∣∣∣∣
3 − λ −1 0

2 −λ 1 − λ
1 −1 1 − λ

∣∣∣∣∣∣ = (1 − λ)

3 − λ −1 0
2 −λ 1
1 −1 1

 ,

et donc en remplaçant l2 par l2 − l3 on obtient

Pf (λ) = (1 − X)

∣∣∣∣∣∣
3 − λ −1 0

1 −λ + 1 0
1 −1 1

∣∣∣∣∣∣ = (1 − X)

(
(3 − λ)(−λ + 1) + 1

)

D’où
Pf (λ) = (1 − λ)(λ − 2)2.

Le polynôme caractéristique de f est scindé dans R. Les valeurs propres sont 2 qui est une valeur propre d’ordre
de multiplicité 2, et 1 qui est une racine simple.

• Deuxième étape : détermination de la dimension des sous-espaces propres.

La dimension du sous-espace propre associé à une valeur propre simple est égale à 1, donc la dimension de E1
est égale à 1.

Déterminer le sous-espace propre associé à la valeur propre 2 revient à déterminer les vecteurs

v = x1e1 + x2e2 + x3e3

de E tels que

(A − 2I3)

x1
x2
x3

 =

1 −1 1
2 −2 1
1 −1 0

x1
x2
x3

 =

0
0
0


Cette équation matricielle équivaut au système x1 −x2 +x3 = 0

2x1 −2x2 +x3 = 0
x1 −x2 = 0

Ce qui équivaut à x1 = x2, et x3 = 0. Soit v = x1 (e1 + e2) donc

E2 = Vect (1, 1, 0)

La dimension de E2 est égale à 1. Or 2 est une valeur propre double, donc l’endomorphisme f n’est pas
diagonalisable.

Exemple 10.
Soit la matrice A à coefficients dans R,

A =

1 1 1
1 1 1
1 1 1


• Première étape : Détermination du polynôme caractéristique de A.

On a

PA(λ) =

∣∣∣∣∣∣
1 − X 1 1

1 1 − X 1
1 1 1 − X

∣∣∣∣∣∣
d’où en remplaçant la ligne l1 par l1 + l2 + l3 on obtient

PA(λ) =

∣∣∣∣∣∣
3 − X 3 − X 3 − X

1 1 − X 1
1 1 1 − X

∣∣∣∣∣∣ = (3 − X)

∣∣∣∣∣∣
1 1 1
1 1 − X 1
1 1 1 − X

∣∣∣∣∣∣
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donc en remplaçant successivement c2 par c2 − c1 et c3 par c3 − c1 on obtient

PA(λ) = (3 − X)

∣∣∣∣∣∣
1 0 0
1 −X 0
1 0 −X

∣∣∣∣∣∣ = (3 − X)X2.

Le polynôme caractéristique de A est scindé dans R. Les valeurs propres sont 0 qui est une valeur propre
d’ordre de multiplicité 2, et 3 qui est une racine simple.

• Deuxième étape : détermination de la dimension des sous-espaces propres.

La dimension du sous-espace associé à une valeur propre simple est égale à 1, donc la dimension de E3 est
égale à 1.

Déterminer le sous-espace propre associé à la valeur propre 0 revient à déterminer les vecteurs v = (x, y, z) de
R3 tels que 1 1 1

1 1 1
1 1 1

x
y
z

 =

0
0
0

 .

Cette équation matricielle équivaut à l’équation x + y + z = 0. Donc

E0 = Vect
(
(1, 0,−1), (0, 1,−1)

)
.

La dimension de E0 est égale à 2. Pour chaque valeur propre, la dimension du sous-espace propre associé
est égale à son ordre de multiplicité en tant que racine du polynôme caractéristique. La matrice est donc
diagonalisable !

• Troisième étape : recherche d’une base de veteurs propres.

Les vecteurs propres associé à la valeur propre 0 sont

(1, 0,−1), (0, 1,−1).

Le vecteur propre associé à la valeur propre 3 verifie

(A − 3I3)

x
y
z

 =

−2 1 1
1 −2 1
1 1 −2

x
y
z

 =

0
0
0


ce qui nous donne comme vecteur propre (1, 1, 1). On a donc

A = PDP−1

avec

P =

 1 0 1
0 1 1
−1 −1 1

 et D =

0 0 0
0 0 0
0 0 3

 .

4 Exercices

Vous pouvez continuer à vous exercer sur votre espace jai20enmaths,
où vous y retrouverez des notions de cours ainsi que des exercices
corrigés. Si vous remarquez une erreur ou avez une suggestion pour
que cet espace de travail soit plus agréable à utiliser, ne surtout pas
hésiter à me le signaler par mail à a.gere@istom.fr.

Exercice 1
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On pose

A =

 −1 0 4
−2 3 2
2 0 1


Calculer AX où

X =

 1
1
1


et en déduire que X est vecteur propre ; quelle est la valeur propre associée ?

Correction H [04.0013]

Exercice 2
Déterminer les valeurs propres réelles de la matrice

A =

 1 0 −1
−1 1 0
0 −1 1


Correction H [04.0012]

Exercice 3
On considère la matrice

A =

 3 2 1
−1 0 −1
−1 −1 1

 .

Est-elle diagonalisable ? Justifier

Correction H [04.0018]

Exercice 4
Soit

A =

 4 −4 4
3 −3 4
3 −3 4

 .

Diagonaliser A.

Correction H [04.0017]

Exercice 5
Diagonaliser les matrices suivantes :

A =

 0 2 −1
3 −2 0
−2 2 1

 , B =

 0 3 2
−2 5 2
2 −3 0

 , C =

 1 0 0
0 1 0
1 −1 2


On donnera aussi la matrice de passage de la base canonique à la base de vecteurs propres.

Correction H [04.0016]

Exercice 6
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Soit M la matrice réelle 3 × 3 suivante :

M =

 0 2 −1
3 −2 0
−2 2 1


1. Déterminer les valeurs propres de M.

2. Montrer que M est diagonalisable.

3. Déterminer une base de vecteurs propres et P la matrice de passage.

4. On a D = P−1MP, pour k ∈ N exprimer Mk en fonction de Dk, puis calculer Mk.

Correction H [04.0019]

Exercice 7
Soit

A =

1 0 0
0 1 0
1 −1 2


Démontrer que A est diagonalisable et trouver une matrice P telle que P−1 AP soit diagonale.

Correction H [04.0020]

Exercice 8
Soit

A =

1 1 −1
0 1 0
1 0 1


Factoriser le polynôme caractéristique de A. La matrice A est-elle diagonalisable dans R ? dans C ?

Correction H [04.0021]

Exercice 9
Soit

A =

(
a c
c d

)
∈ M2(R)

Démontrer que A est diagonalisable dans R.

Correction H [04.0022]

Exercice 10
Soit A la matrice suivante

A =

 3 0 −1
2 4 2
−1 0 3


1. Déterminer et factoriser le polynome caracteristique de A.

2. Démontrer que A est diagonalisable et determiner une matrice D diagonale et une matrice P inversible telles
A = PDP−1.

3. Inverser la matrice P.

4. Calculer An pour n ∈ N.
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Correction H [04.0015]

Exercice 11
Soit m un nombre réel et A dont la matrice suivante

A =

 1 0 1
−1 2 1

2 − m m − 2 m


1. Quelles sont les valeurs propres de A ?

2. Pour quelles valeurs de m la matrice A est-elle diagonalisable ?

3. On suppose m = 3. Calculer Ak pour tout k ∈ N.

Correction H [04.0014]

Exercice 12
Soient A et B deux matrices carrées de M3(C) telles que A = B2.

1. Montrer que si B est diagonalisable alors A est diagonalisable. En utilisant la matrice 0 0 1
0 0 0
0 0 0


justifier que la réciproque est fausse.

2. On veut déterminer les matrices B ∈ M3(C) telles que A = B2 lorsque

A =

 11 −5 −5
−5 3 3
−5 3 3


(a) Vérifier que A est diagonalisable et préciser P ∈ M3(C) et D diagonale telles que A = PDP−1

(b) Si C = P−1BP, établir que C · C = D puis que C et D commutent.

(c) En déduire les matrices C qui conviennent puis les solutions du problème.

Correction H [04.0029]

Exercice 13
On considère la suite (un)n∈N définie par u0 = 0, u1 = 1 et par la relation de récurrence

un+1 =
1
2
(un + un−1).

1. Déterminer une matrice A ∈ M2(R) telle que pour tout n ≥ 1 on ait(
un+1

un

)
= An

(
u1
u0

)
.

Justifier.

2. Déterminer le polynôme caractéristique PA(X) de A et calculer ses racines λ1 et λ2.
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3. Soit Rn(X) = anX + bn le reste de la division euclidienne de Xn par PA(X). Calculer an et bn (on pourra
utiliser les racines λ1 et λ2).

4. Montrer que An = an A + bn I2, en déduire que la matrice An converge lorsque n tend vers +∞ vers une limite
A∞ que l’on déterminera. Calculer lim

n→+∞
un.

Correction H [04.0025]

Exercice 14

Résoudre le système différentiel suivant :

 x′ = y + z
y′ = −x + 2y + z
z′ = x + z

Correction H [04.0001]

Exercice 15

Résoudre le système différentiel suivant :


x′ = x + 2y − z
y′ = 2x + 4y − 2z
z′ = −x − 2y + z

Correction H [04.0002]

Exercice 16
Soient x, y et z trois applications dérivables sur R et ω une application trois fois dérivable sur R.

1. Résoudre l’équation différentielle {
ω′′′ + ω′′ + ω′ + ω = 0
ω(0) = 1, ω′(0) = 0, ω′′(0) = 0.

2. Résoudre le système différentiel 
ẋ = 2x + 2y + 2z
ẏ = x + 3y + 2z
ż = −x − y − z
x(0) = 1, y(0) = 2, z(0) = −1.

Correction H [04.0011]

Exercice 17
On considère une matrice

M =

3 −2 0
1 0 0
0 1 0


et f l’endomorphisme de R3 dont la matrice dans la base canonique de R3 est M.

1. L’endomorphisme f est-il inversible ?

2. Montrer que M est diagonalisable. Trouver une base de vecteurs propres de M. Diagonaliser M.

3. On considère la matrice

M′ =

0 3 −1
0 3 −2
0 1 0

 .

Montrer que M′ admet les mêmes valeurs propres que M.
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4. Montrer qu’il existe une une matrice inversible Q telle que M′ = QMQ−1.

Correction H [04.0004]

Exercice 18
On considère la matrice

A =

−4 −6 0
3 5 0
3 6 5

 .

1. Déterminer les valeurs propres de A puis la diagonaliser la matrice A.

2. Déterminer, pour tout n ∈ N, An.

3. On considère maintenant trois suites réelles (un), (vn) et (wn) définies par leurs premiers termes respectifs u0,
v0 et w0 et ∀n ∈ N, 

un = −4un−1 − 6vn−1

vn = 3un−1 + 5vn−1

wn = 3un−1 + 6vn−1 + 5wn−1.

Déterminer, pour chaque n ∈ N, les expressions de un, vn et wn en fonction de n et u0, v0 et w0.

Correction H [04.0008]

Exercice 19
On considère la matrice

A =

1 1 3
1 3 1
3 1 1

 .

1. Déterminer les valeurs propres de A puis diagonaliser la matrice A.

2. Déterminer An.

3. On considère maintenant trois suites réelles (un), (vn) et (wn) définies par leurs premiers termes respectifs u0,
v0 et w0 et ∀n ∈ N, 

un+1 = un + vn + 3wn

vn+1 = un + 3vn + wn

wn+1 = 3un + vn + wn.

Déterminer, pour chaque n ∈ N, les expressions de un, vn et wn en fonction de n et u0, v0 et w0.

Correction H [04.0009]
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Correction de l’exercice 1 N

On a

AX =

 −1 0 4
−2 3 2
2 0 1

1
1
1

 =

3
3
3

 = 3

1
1
1

 .

X est donc un vecteur propre de A associé à la valeur propre 3.

Correction de l’exercice 2 N

cf. correction manuscrite.

Correction de l’exercice 3 N

cf. correction manuscrite.

Correction de l’exercice 4 N

cf. correction manuscrite.

Correction de l’exercice 5 N

cf. correction manuscrite.

Correction de l’exercice 6 N

Soit M la matrice réelle 3 × 3 suivante :

M =

 0 2 −1
3 −2 0
−2 2 1


1. Déterminons les valeurs propres de M.

Ce sont les racines du polynôme caractéristique

PM(X) =

∣∣∣∣∣∣
−X 2 −1

3 −2 − X 0
−2 2 1 − X

∣∣∣∣∣∣ = −1
∣∣∣∣ 3 −2 − X
−2 2

∣∣∣∣+ (1 − X)

∣∣∣∣−X 2
3 −2 − 2X

∣∣∣∣ (1)

= (1 − X)(X2 + 2X − 8) (2)
= (1 − X)(X + 4)(X − 2). (3)

La matrice M admet donc trois valeurs propres distinctes qui sont : 1, 2, et −4.

2. Montrons que M est diagonalisable.

Nous venons de voir que M, matrice réelle 3× 3, admet trois valeurs propres réelles distinctes, cela prouve que
M est diagonalisable.

3. Déterminons une base de vecteurs propres et P la matrice de passage.

Les trois sous-espaces propres distincts sont de dimension 1, il suffit de déterminer un vecteur propre pour
chacune des valeurs propres.

λ = 1 : Le vecteur u⃗ de coordonnées (x, y, z) est un vecteur propre pour la valeur propre 1 si et seulement si 2y − z = x
3x − 2y = y
−2x + 2y + z = z

⇐⇒

 −x + 2y − z = 0
3x − 3y = 0
−2x + 2y = 0

⇐⇒
{

x = y
x = z

Le sous-espace propre associé à la valeur propre λ = 1 est la droite vectorielle engendrée par le vecteur e⃗1 de
coordonnées (1, 1, 1).
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λ = 2 : Le vecteur u⃗ de coordonnées (x, y, z) est un vecteur propre pour la valeur propre 2 si et seulement si −2x + 2y − z = 0
3x − 4y = 0
−2x + 2y − z = 0

⇐⇒
{

3x − 4y = 0
−2x + 2y − z = 0

Le sous-espace propre associé à la valeur propre λ = 2 est la droite vectorielle engendrée par le vecteur e⃗2 de
coordonnées (4, 3,−2).

λ = −4 : Le vecteur u⃗ de coordonnées (x, y, z) est un vecteur propre pour la valeur propre −4 si et seulement
si  −4x + 2y − z = 0

3x + 2y = 0
−2x + 2y + 5z = 0

⇐⇒
{

x − z = 0
2y + 3x = 0

Le sous-espace propre associé à la valeur propre λ = −4 est la droite vectorielle engendrée par le vecteur e⃗3
de coordonnées (2,−3, 2).

Les vecteurs e⃗1, e⃗2 et e⃗3 forment une base de E composée de vecteurs propres, la matrice de passage P est
égale à

P =

1 4 2
1 3 −3
1 −2 2


4. Exprimons Mk en fonction de Dk, puis calculons Mk.

On a

D = P−1MP =

1 0 0
0 2 0
0 0 −4


pour k ∈ N, on a

Dk =

1 0 0
0 2k 0
0 0 (−4)k

 ,

et Mk = PDkP−1.

Calculons donc la matrice P−1 : on a P−1 =
1

det P
(comP)t. Or

det P =

∣∣∣∣∣∣
1 4 2
1 3 −3
1 −2 2

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 6 2
1 0 −3
1 0 2

∣∣∣∣∣∣ = −6
∣∣∣∣1 −3
1 2

∣∣∣∣ = −30,

et

comP =

 0 −5 −5
−12 0 6
−18 5 −1


d’où

P−1 = − 1
30

 0 −12 −18
−5 0 5
−5 6 −1

 .

On a donc

Mk = PDkP−1 = − 1
30

−5.2k+2 − 10(−4)k −12 + 12(−4)k −18 + 5.2k+2 − 2(−4)k

−15.2k − 15(−4)k −12 − 18(−4)k −18 + 5.2k+1 + 3(−4)k

5.2k+1 − 10(−4)k −12 + 12(−4)k −18 − 5.2k+1 − 2(−4)k



Correction de l’exercice 7 N
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Soit

A =

1 0 0
0 1 0
1 −1 2


Démontrons que A est diagonalisable et trouvons une matrice P telle que P−1 AP soit diagonale.
Commençons par calculer le polynôme caractéristique de A :

PA(X) =

∣∣∣∣∣∣
1 − X 0 0

0 1 − X 0
1 −1 2 − X

∣∣∣∣∣∣ = (1 − X)2(2 − X)

Les racines du polynôme caractéristique sont les réels 1 avec la multiplicité 2, et 2 avec la multiplicité 1.
Déterminons les sous-espaces propres associés : Soit E1 le sous-espace propre associé à la valeur propre double 1.
E1 = {V(x, y, z) ∈ R3/ A.V = V},

V ∈ E1 ⇐⇒

 x = x
y = y
x − y + z = 0

⇐⇒ x − y + z = 0

E1 est donc un plan vectoriel, dont les vecteurs e1 = (1, 1, 0) et e2 = (0, 1, 1) forment une base.
Soit E2 le sous-espace propre associé à la valeur propre simple 2.
E2 = {V(x, y, z) ∈ R3/ A.V = 2V},

V ∈ E2 ⇐⇒

 x = 2x
y = 2y
x − y + 2z = 2z

⇐⇒ x = 0, y = 0

E2 est donc une droite vectorielle, dont le vecteur e3 = (0, 0, 1) est une base.
Les dimensions des sous-espaces propres sont égales à la multiplicité des valeurs propres correspondantes, la matrice
A est donc diagonalisable. Dans la base (e1, e2, e3) l’endomorphisme représenté par A (dans la base canonique) a
pour matrice.

D =

1 0 0
0 1 0
0 0 2


la matrice de passage

P =

1 0 0
1 1 0
0 1 1


vérifie P−1 AP = D.

Correction de l’exercice 8 N

Soit

A =

1 1 −1
0 1 0
1 0 1


Factorisons le polynôme caractéristique de A.

PA(X) =

∣∣∣∣∣∣
1 − X 1 −1

0 1 − X 0
1 0 1 − X

∣∣∣∣∣∣ = (1 − X)3 + (1 − X) = (1 − X)((1 − X)2 + 1) = (1 − X)(X2 − 2X + 2)

factorisons maintenant le polynôme X2 − 2X + 2, le discriminant réduit ∆′ = 1 − 2 = −1, ce polynôme n’admet
donc pas de racines réelles, mais deux racines complexes conjuguées qui sont : 1 + i et 1 − i. On a PA(X) =
(1 − X)(1 − i − X)(1 + i − X).
La matrice A n’est pas diagonalisable dans R car son polynôme caractéristique n’a pas toutes ses racines dans R,
elle est diagonalisable dans C car c’est une matrice 3 × 3 qui admet trois valeurs propres distinctes.
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Correction de l’exercice 9 N

Soit

A =

(
a c
c d

)
∈ M2(R)

Démontrons que A est diagonalisable dans R.
Le polynôme caractéristique PA(X) est égal à

PA(X) =

∣∣∣∣a − X c
c d − x

∣∣∣∣ = (a − X)(d − X)− c2 = X2 − (a + d)X + ad − c2,

déterminons ses racines : calculons le discriminant :

∆ = (a + d)2 − 4(ad − c2)

= a2 + d2 + 2ad − 4ad + 4c2

= a2 + d2 − 2ad + 4c2

= (a − d)2 + 4c2 ≥ 0

On a ∆ = 0 ⇐⇒ a − d = 0 et c = 0, mais, si c = 0, la matrice A est déjà diagonale. Sinon ∆ > 0 et le polynôme
caractéristique admet deux racines réelles distinctes, ce qui prouve que la matrice est toujours diagonalisable dans R.

Correction de l’exercice 10 N

cf. correction manuscrite.

Correction de l’exercice 11 N

cf. correction manuscrite.

Correction de l’exercice 12 N

cf. correction manuscrite.

Correction de l’exercice 13 N

cf. correction manuscrite.

Correction de l’exercice 14 N

cf. correction manuscrite.

Correction de l’exercice 15 N

cf. correction manuscrite.

Correction de l’exercice 16 N

cf. correction manuscrite.

Correction de l’exercice 17 N

cf. correction manuscrite.
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Correction de l’exercice 18 N

cf. correction manuscrite.

Correction de l’exercice 19 N

cf. correction manuscrite.
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Wolfram|Alpha est un moteur de recherche scientifique, une superbe
calculatrice à tout faire. Disponible sur le navigateur mais également
sur mobile avec une application téléchargeable sur Google Play et l’App
Store.

Etudiez en musique !
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Ce cours est composé de 6 séances de 2 heures.
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Cours et exercices rédigés par Antoine Géré.
Exercices rédigés par Antoine Géré.
Relu par (coming soon).
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